Acta Geotechnica

, Volume 8, Issue 5, pp 465–480

A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band

  • WaiChing Sun
  • Matthew R. Kuhn
  • John W. Rudnicki
Research Paper

DOI: 10.1007/s11440-013-0210-2

Cite this article as:
Sun, W., Kuhn, M.R. & Rudnicki, J.W. Acta Geotech. (2013) 8: 465. doi:10.1007/s11440-013-0210-2


This paper presents a multiscale analysis of a dilatant shear band using a three-dimensional discrete element method and a lattice Boltzmann/finite element hybrid scheme. In particular, three-dimensional simple shear tests are conducted via the discrete element method. A spatial homogenization is performed to recover the macroscopic stress from the micro-mechanical force chains. The pore geometries of the shear band and host matrix are quantitatively evaluated through morphology analyses and lattice Boltzmann/finite element flow simulations. Results from the discrete element simulations imply that grain sliding and rotation occur predominately with the shear band. These granular motions lead to dilation of pore space inside the shear band and increases in local permeability. While considerable anisotropy in the contact fabric is observed with the shear band, anisotropy of the permeability is, at most, modest in the assemblies composed of spherical grains.


Discrete element method Homogenization Lattice Boltzmann method Micromechanics of granular materials Microstructure Strain localization 

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • WaiChing Sun
    • 1
  • Matthew R. Kuhn
    • 2
  • John W. Rudnicki
    • 3
  1. 1.Mechanics of MaterialsSandia National LaboratoriesLivermoreUSA
  2. 2.Department of Civil Engineering, Donald P. Shiley School of EngineeringUniversity of PortlandPortlandUSA
  3. 3.Department of Civil and Environmental EngineeringTechnology Institute A333, Northwestern UniversityEvanstonUSA

Personalised recommendations