Acta Geotechnica

, Volume 8, Issue 5, pp 465–480 | Cite as

A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band

  • WaiChing Sun
  • Matthew R. Kuhn
  • John W. Rudnicki
Research Paper

Abstract

This paper presents a multiscale analysis of a dilatant shear band using a three-dimensional discrete element method and a lattice Boltzmann/finite element hybrid scheme. In particular, three-dimensional simple shear tests are conducted via the discrete element method. A spatial homogenization is performed to recover the macroscopic stress from the micro-mechanical force chains. The pore geometries of the shear band and host matrix are quantitatively evaluated through morphology analyses and lattice Boltzmann/finite element flow simulations. Results from the discrete element simulations imply that grain sliding and rotation occur predominately with the shear band. These granular motions lead to dilation of pore space inside the shear band and increases in local permeability. While considerable anisotropy in the contact fabric is observed with the shear band, anisotropy of the permeability is, at most, modest in the assemblies composed of spherical grains.

Keywords

Discrete element method Homogenization Lattice Boltzmann method Micromechanics of granular materials Microstructure Strain localization 

References

  1. 1.
    Andò E, Hall SA, Viggiani G, Desrues J, Bésuelle P (2012) Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech 7:1–13CrossRefGoogle Scholar
  2. 2.
    Antonellini M, Pollard DD (1995) Distinct element modeling of deformation bands in sandstone. J Struct Geol 17:1165–1182CrossRefGoogle Scholar
  3. 3.
    Aydin A, Borja RI, Eichhubl P (2005) Geological and mathematical framework for failure modes in granular rock. J Struct Geol 29:1831–1842Google Scholar
  4. 4.
    Bear J (1972) Dynamics of fluids in porous media. Elsevier Publishing Company, New YorkMATHGoogle Scholar
  5. 5.
    Bésuelle P, Rudnicki JW (2004) Localization: shear bands and compaction bands. International Geophysics Series, vol 89, pp 219–321Google Scholar
  6. 6.
    Bésuelle P, Desrues J, Raynaud S (2000) Experimental characterisation of the localisation phenomenon inside a vosges sandstone in a triaxial cell. Int J Rock Mech Min Sci 37(8):1223–1237CrossRefGoogle Scholar
  7. 7.
    Borja RI, Song X, Rechenmacher AL, Abedi S, Wu W (2013) Shear band in sand with spatially varying density. J Mech Phys Solids 61(1):219–234CrossRefGoogle Scholar
  8. 8.
    Boutt DF, Cook BK, Williams JR (2011) A coupled fluid-solid model for problems in geomechanics: application to sand production. Int J Num Anal Methods Geomech 35(9):997–1018CrossRefMATHGoogle Scholar
  9. 9.
    Casagrande A (1936) Characteristics of cohensionless soils affecting the stability of slops and earth fills. J Boston Soc Civil Eng 23:13–32Google Scholar
  10. 10.
    Chen C, Packman AI, Gaillard JF (2008) Using X-ray micro-tomography and pore-scale modeling to quantify sediment mixing and fluid flow in a developing streambed. Geophys Res Lett 35(14)Google Scholar
  11. 11.
    Chupin O, Rechenmacher AL, Abedi S (2012) Finite strain analysis of nonuniform deformation inside shear bands in sands. Int J Num Anal Methods Geomech 36(14):1651–1666CrossRefGoogle Scholar
  12. 12.
    Cundall PA (1988) Computer simulations of dense sphere assemblies. In: M Satake, JT Jenkins (eds) Micromechanics of granular materials, Elsevier Science Pub. B.V., Amsterdam, pp 113–123Google Scholar
  13. 13.
    Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65CrossRefGoogle Scholar
  14. 14.
    El Shamy U, Zeghal M (2005) Coupled continuum-discrete model for saturated granular soils. J Eng Mech 131(4):413–426CrossRefGoogle Scholar
  15. 15.
    Feng YT, Han K, Owen DRJ (2007) Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: computational issues. Int J Num Anal Methods Geomech 72(9):1111–1134MathSciNetMATHGoogle Scholar
  16. 16.
    Hall S, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G, Bésuelle P (2010) Discrete and continuum analysis of localized deformation in sand using x-ray ct and volumetric digital image correlation. Géotechnique 60:315–322CrossRefGoogle Scholar
  17. 17.
    Hilfer R, Manwart C (2001) Permeability and conductivity for reconstruction models of porous media. Phys Rev E 64Google Scholar
  18. 18.
    Houlsby GT (2009) Potential particles: a method for modelling non-circular particles in DEM. Comput Geotech 36(6):953–959CrossRefGoogle Scholar
  19. 19.
    Irmay S (1954) On the hydraulic conductivity of unsaturated soils. Trans Am Geophys Union 35:463–468CrossRefGoogle Scholar
  20. 20.
    Jensen JL (1991) Use of geometric average for effective permeability estimation. Math Geol 23(6):833–840CrossRefGoogle Scholar
  21. 21.
    Johnson KL (1985) Contact mechanics, Cambridge University Press, CambridgeGoogle Scholar
  22. 22.
    Johnson DL, Koplik J, Schwartz LM (1986) New pore-size parameter characterizing transport in porous media. Phys Rev Lett 57:2564–2567CrossRefGoogle Scholar
  23. 23.
    Kuhn MR (2005) Scaling in granular materials. In: García-Rojo R, Herrmann HJ, McNamara S (eds) Powders and grains 2005. A.A. Balkema, Leiden, pp 115–122Google Scholar
  24. 24.
    Kuhn MR (2011) Implementation of the Jäger contact model for discrete element simulations. Chem Eng. 88(1):66–82MATHGoogle Scholar
  25. 25.
    Kuhn MR, Bagi K (2004) Contact rolling and deformation in granular media. Int J Solids Struct 41:5793–5820CrossRefMATHGoogle Scholar
  26. 26.
    Legland D, Kiêu K, Devaux M-F (2011) Computation of Minkowski measures on 2d and 3d binary images. Image Anal Stereol 26(2):1854–5165Google Scholar
  27. 27.
    Lenoir N, Andrade JE, Sun WC, Rudnicki JW (2010) Permeability measurements in sandstones using x-ray ct and lattice Boltzmann calculations inside and outside of compaction bands. Adv Comput Tomogr Geomater. GEOX2010, ISTE & Wiley, pp 279–286Google Scholar
  28. 28.
    Lindquist WB, Vankatarangan A, Dunsmuir J, Wong T-F (2000) Pore and throat size distributions measured from synchrotron x-ray tomographic images of fontainebleau sandstone. J Geophys Res 105:21509–21527CrossRefGoogle Scholar
  29. 29.
    Louis L, Baud P, Wong T-F (2007) Characterization of pore-space heterogeneity in sandstone by x-ray computed tomography. Geol Soc Lond Special Publ 284(1):127–146CrossRefGoogle Scholar
  30. 30.
    Mitchell JK, Soga K (2005) Fundamentals of soil behavior, 3rd edn. Wiley, New JerseyGoogle Scholar
  31. 31.
    Oda M, Nemat-Nasser S, Mehrabadi MM (1982) A statistical study of fabric in a random assembly of spherical granules. Int J Num Anal Methods Geomech 6:77–94MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Rechenmacher AL, Abedi S, Chupin O, Orlando AD (2011) Characterization of mesoscale instabilities in localized granular shear using digital image correlation. Acta Geotech 6:205–217CrossRefGoogle Scholar
  33. 33.
    Rudnicki JW (2004) Shear and compaction band formation on an elliptic yield cap. J Geophys Res 109:B3CrossRefGoogle Scholar
  34. 34.
    Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23:371–394CrossRefGoogle Scholar
  35. 35.
    Satake M (1982) Fabric tensor in granular materials. In Vermeer PA, and Luger HJ (eds) Proceedings of IUTAM symposium on deformation and failure of granular materials. A.A. Balkema, Rotterdam, pp 63–68Google Scholar
  36. 36.
    Scheidegger AE (1960) The physics of flow through porous media. University of Toronto Press, TorontoMATHGoogle Scholar
  37. 37.
    Schneider CA, Rashand WS, Eliceiri KW (2012) Nih image to imagej: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  38. 38.
    Succi S (2001) The lattice Boltzmann equation. Oxford University Press, OxfordMATHGoogle Scholar
  39. 39.
    Sun WC, Andrade JE, Rudnicki JW (2011a) Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability. Int J Num Methods Eng 88:1260–1279MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Sun WC, Andrade JE, Rudnicki JW, Eichhubl E (2011b) Connecting microstructural attributes and permeability from 3d tomographic images of in situ shear-enhanced compaction bands using multiscale computations. Geophys Res Lett 38:L10302CrossRefGoogle Scholar
  41. 41.
    Talon L, Bauer D, Gland N, Youssef S, Auradou H, Ginzburg I (2012) Assessment of the two relaxation time lattice-Boltzmann scheme to simulate stokes flow in porous media. Water Resourc Res 48:W04526CrossRefGoogle Scholar
  42. 42.
    Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1):43–53CrossRefGoogle Scholar
  43. 43.
    Thornton C, Randall CW (1988) Applications of theoretical contact mechanics to solid particle system simulation. In Satake M, Jenkins JT (eds) Micromechanics of granular materials, Elsevier Science Pub. B.V., Amsterdam, pp 133–142Google Scholar
  44. 44.
    Wawersik WR et al (2008) Terrestrial sequestration of CO2: an assessment of research needs. Adv Geophys 43:97–117CrossRefGoogle Scholar
  45. 45.
    White JA, Borja RI, Fredrich JT (2006) Calculating the effective permeability of sandstone with multiscale lattice Boltzmann/finite element simulations. Acta Geotech 1:195–209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • WaiChing Sun
    • 1
  • Matthew R. Kuhn
    • 2
  • John W. Rudnicki
    • 3
  1. 1.Mechanics of MaterialsSandia National LaboratoriesLivermoreUSA
  2. 2.Department of Civil Engineering, Donald P. Shiley School of EngineeringUniversity of PortlandPortlandUSA
  3. 3.Department of Civil and Environmental EngineeringTechnology Institute A333, Northwestern UniversityEvanstonUSA

Personalised recommendations