Advertisement

Acta Geotechnica

, Volume 7, Issue 2, pp 115–127 | Cite as

Considerations on a suction drill for lunar surface drilling and sampling: II. experimental tests in vacuum conditions

  • Jörg Faßwald
  • Norbert I. KömleEmail author
  • Mark S. Bentley
  • Peter Weiss
Research Paper
  • 283 Downloads

Abstract

Drilling devices with the ability to create narrow, but deep, boreholes in a planetary surface are important tools for the exploration of the structure and properties of planetary surface layers. Therefore, they are usually proposed for planetary landers for the Moon, Mars, Venus or small planetary bodies. A method based on the use of a cold gas flow for ejecting debris particles from the borehole has recently been suggested and investigated theoretically (Kömle et al. in Acta Geotech 3:201–214, 2008a). The current paper reports on laboratory experiments designed to validate this method under vacuum or low pressure conditions. Two different sample materials were used: (1) glass beads in the sub-millimeter size range, and (2) the certified lunar analog material JSC-1A, a finely crushed basaltic rock. For both materials, the suction process for removing the particles from a simulated borehole worked well and with a moderate gas consumption.

Keywords

Drilling and sampling Gas drill Moon Regolith 

Notes

Acknowledgments

This work was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung under its TRP project L317-N14.

References

  1. 1.
    Cheng NS (2009) Comparison of formulas for drag coefficient and settling velocity of spherical particles. Powder Technol 189:395–398CrossRefGoogle Scholar
  2. 2.
    Craig RF (1997) Soil mechanics. E&FN Spon, LondonGoogle Scholar
  3. 3.
    Cunningham E (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc R Soc Lond A 83:357–365zbMATHCrossRefGoogle Scholar
  4. 4.
    Gad-el-Hak M (1999) The fluid mechanics of microdevices—the Freeman scholar lecture. J Fluid Eng 121:5–33CrossRefGoogle Scholar
  5. 5.
    Haider A, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and non-spherical particles. Powder Technol 58:63–70CrossRefGoogle Scholar
  6. 6.
    He C (2010) Geotechnical characterization of lunar regolith simulants. PhD-thesis, Case Western University/School of Graduate StudiesGoogle Scholar
  7. 7.
    Jousten K, Wutz M (2010) Handbuch Vakuumtechnik. Verlag Vieweg+Teubner, BerlinGoogle Scholar
  8. 8.
    Kömle NI, Weiss P, Yung KL (2008) Considerations on a suction drill for lunar surface drilling and sampling: I. Feasibility study. Acta Geotech 3:201–214CrossRefGoogle Scholar
  9. 9.
    Kömle NI, Hütter ES, Kargl G, Ju HH, Gao Y, Grygorczuk J (2008) Development of thermal sensors and drilling systems for application on lunar lander missions. Earth Moon Planet 103:119–141CrossRefGoogle Scholar
  10. 10.
    Kömle NI, Huetter ES, Feng WJ (2010) Thermal conductivity measurements of coarse-grained gravel materials using a hollow cylindrical sensor. Acta Geotech 5:211–223CrossRefGoogle Scholar
  11. 11.
    Landis RR, Abell PA, Korsmeyer DJ, Jones TD, Adamo DR (2009) Piloted operations at a near-Earth Object (NEO). Acta Astronaut 65:1689–1697CrossRefGoogle Scholar
  12. 12.
    Moshfegh A, Shams M, Ahmadi G, Ebrahimi R (2010) A new expression for spherical aerosol drag slip flow regime. J Aerosol Sci 41:384–400CrossRefGoogle Scholar
  13. 13.
    Spohn T, Seiferlin K, Hagermann A, Knollenberg J, Ball AJ, Banaszkiewicz M, Benkhoff J, Gadomski S, Grygorczuk J, Hlond M, Kargl G, Kührt E, Kömle N, Marczewski W, Zarnecki JC (2007) MUPUS—a thermal and mechanical properties probe for the Rosetta Lander PHILAE. Space Sci Rev 128:339–362CrossRefGoogle Scholar
  14. 14.
    Stephan P (ed) et al (2010) VDI heat atlas, 2nd edn. Springer, Berlin, pp 1182–1186Google Scholar
  15. 15.
    Zacny KA, Quayle MC, Cooper GA (2005) Enhancing cuttings removal with gas blasts while drilling on Mars. J Geophys Res 110:04002, 1-16CrossRefGoogle Scholar
  16. 16.
    Zacny K, Bar-Cohen Y, Brennan M, Briggs G, Cooper G, Davies K, Dolgin B, Glaser D, Glass B, Gorevan S, Guerrero J, McKay C, Paulsen G, Stanley S, Stoker C (2008) Drilling systems for extraterrestrial subsurface exploration. Astrobiology 8:665–706CrossRefGoogle Scholar
  17. 17.
    Zacny K, Mungas G (2006) Pneumatic excavation mechanism for lunar resource utilization. NASA SBIR Phase 1 Proposal, No. X4.03-8139Google Scholar
  18. 18.
    Zeng XW, He CM, Oravec H, Wilkinson A, Agui J, Asnani V (2010) Geotechnical properties of JSC-1A lunar soil simulant. J Aerosp Eng 23(2):111. doi: 10.1061/(ASCE)AS.1943-5525.0000014 (6 pages)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jörg Faßwald
    • 1
  • Norbert I. Kömle
    • 1
    Email author
  • Mark S. Bentley
    • 1
  • Peter Weiss
    • 2
  1. 1.Space Research Institute, Austrian Academy of SciencesGrazAustria
  2. 2.Departement Ingenierie en Milieux ExtremesCOMEX, Centre d’ Essais HyperbaresMarseilleFrance

Personalised recommendations