Acta Geotechnica

, Volume 6, Issue 4, pp 219–229 | Cite as

A double slip non-coaxial flow rule for viscous-plastic Cosserat materials

  • Hans B. Mühlhaus
  • Jingyu Shi
  • Louise Olsen-Kettle
  • Louis Moresi
Research Paper

Abstract

We propose a double slip non-coaxial plastic model within the framework of a Cosserat continuum theory. In a Cosserat continuum, a material point possesses the degrees of freedom of an infinitesimal rigid body: two translations and one rotation in 2D. We formulate the plastic model into viscous-plastic constitutive relationships and illustrate the viscous-plastic behaviour of the model by means of numerical solution of a simple shear problem.

Keywords

Cosserat continuum Double slip Flow rule Non-coaxial 

Notes

Acknowledgments

We would like to acknowledge support from the ARC Discovery Grants DP0985662, DP110103024 and the ongoing support through Auscope/NCRIS. We are also grateful to Lutz Gross, Cihan Altinay and Vince Boros of ESSCC at the University of Queensland for various helps during the preparation of the manuscript.

References

  1. 1.
    Anand L (1983) Plane deformations of ideal granular materials. J Mech Phys Solids 31:105–122MATHCrossRefGoogle Scholar
  2. 2.
    Bercovici D, Schubert G, Zebib A (1988) Geoid and topography for infinite Prandtl number convection in a spherical shell. J Geophys Res 93:6430–6436CrossRefGoogle Scholar
  3. 3.
    Bunge HP, Richards MA, Baumgardner JR (1996) Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379:436–438CrossRefGoogle Scholar
  4. 4.
    De Josselin de Jong G (1958) The undefiniteness in kinematics for friction materials. In: Proceedings of the conference on earth pressure problem, Brussels, vol 1, pp 55–70Google Scholar
  5. 5.
    De Josselin de Jong G (1971) The double sliding, free rotating model for granular assemblies. Geotechnique 21:155–162CrossRefGoogle Scholar
  6. 6.
    Gross L, Bourgouin L, Hale AJ, Mühlhaus HB (2007) Interface modeling in incompressible media using level sets in escript. Phys Earth Planet Inter 163:23–34CrossRefGoogle Scholar
  7. 7.
    Harris D (1995) A unified formulation for plasticity models of granular and other materials. Proc R Soc Lond A 450:37–49MATHCrossRefGoogle Scholar
  8. 8.
    Jiang MJ, Harris D, Yu HS (2005) Kinematic models for non-coaxial granular materials, part I. Int J Numer Anal Meth Geomech 29:643–661MATHCrossRefGoogle Scholar
  9. 9.
    Jiang MJ, Harris D, Yu HS (2005) Kinematic models for non-coaxial granular materials, part II. Int J Numer Anal Meth Geomech 29:663–689MATHCrossRefGoogle Scholar
  10. 10.
    Jiang MJ, Harris D, Yu HS (2005) A novel approach to examine double-shearing type models for granular materials. Granul Matter 7:157–168MATHCrossRefGoogle Scholar
  11. 11.
    Kreemer C, Holt WE, Haines AJ (2003) An integrated global model of present-day plate motions and plate boundary deformation. Geophys J Int 154:8–34CrossRefGoogle Scholar
  12. 12.
    Mehrabadi MM, Cowin SC (1978) Initial planar deformation of dilatant granular materials. J Mech Phys Solids 26:269–284MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Moresi L, Solomatov V (1998) Mantle convection with a brittle lithosphere: thoughts on the global tectonic style of the Earth and Venus. Geophys J 133:669–682CrossRefGoogle Scholar
  14. 14.
    Mühlhaus HB, Vardoulakis I (1987) The thickness of shear bands in granular materials. Geotechnique 37:271–283CrossRefGoogle Scholar
  15. 15.
    Mühlhaus H, Moresi L, Gross L, Grotowski J (2010) The influence of non-coaxiality on shear banding in viscous plastic materials. Granul Matter doi: 10.1007/s10035-010-0176-9
  16. 16.
    Mühlhaus HB, Shi J, Olsen-Kettle L, Moresi L (2011) Effects of a non-coaxial flow rule on shear bands in viscous-plastic materials. Granul Matter 13:205–210CrossRefGoogle Scholar
  17. 17.
    Prabhakar V, Reddy JN (2006) Spectral/hp penalty least-squares finite element formulation for the steady incompressible Navier–Stokes equations. J Comput Phys 215:274–297MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Spencer AJM (1964) A theory of the kinematics of ideal soils under plane strain conditions. J Mech Phys Solids 12:337–351MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Tackley PJ (1996) On the ability of phase transitions and viscosity layering to induce long-wavelength heterogeneity in the mantle. Geophys Res Lett 23:1985–1988CrossRefGoogle Scholar
  20. 20.
    Tackley PJ, Stevenson DJ, Glatzmaier GA, Schubert G (1993) Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle. Nature 361(6414):699–704CrossRefGoogle Scholar
  21. 21.
    Tejchman J (2000) Behaviour of granular bodies in induced shear zones. Granul Matter 2:77–96CrossRefGoogle Scholar
  22. 22.
    Tejchman J (2001) Shearing of an infinite narrow granular layer between two boundaries. In: Muhlhaus H-B (ed) Bifurcation and localisation theory in geomechanics. Swets and Zeitlinger, LisseGoogle Scholar
  23. 23.
    Tejchman J, Bauer E (2005) Fe-simulations of direct and a true simple shear test within a polar hypoplasticity. Comput Geotech 32:1–16CrossRefGoogle Scholar
  24. 24.
    Tejchman J, Gudehus G (2001) Shearing of a narrow granular layer with polar quantities. Int J Numer Anal Meth Geomech 25:1–28MATHCrossRefGoogle Scholar
  25. 25.
    Thornton C, Zhang L (2006) A numerical examination of shear banding and simple shear non-coaxial flow rules. Philos Mag 86:3425–3452CrossRefGoogle Scholar
  26. 26.
    van Heck H, Tackley PJ (2008) Planforms of self-consistently generated plate tectonics in 3-D spherical geometry. Geophys Res Lett 35:L19312. doi: 10.1029/2008GL035190 CrossRefGoogle Scholar
  27. 27.
    Zhong SJ, Zuber MT, Moresi L, Gurnis M (2000) Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J Geophys Res 105:11063–11082CrossRefGoogle Scholar
  28. 28.
    Zhong SJ, Zhang N, Li ZX, Roberts J (2007) Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth Planet Sci Lett 261:551–564CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hans B. Mühlhaus
    • 1
  • Jingyu Shi
    • 1
  • Louise Olsen-Kettle
    • 1
  • Louis Moresi
    • 2
  1. 1.School of Earth SciencesThe University of QueenslandBrisbaneAustralia
  2. 2.School of Geosciences, School of Mathematical SciencesMonash UniversityClaytonAustralia

Personalised recommendations