Advertisement

Acta Geotechnica

, 3:273 | Cite as

From micron-sized needle-shaped hydrates to meter-sized shotcrete tunnel shells: micromechanical upscaling of stiffness and strength of hydrating shotcrete

  • Bernhard PichlerEmail author
  • Stefan Scheiner
  • Christian Hellmich
Research Paper

Abstract

Knowledge on the stresses in shotcrete tunnel shells is of great importance, as to assess their safety against severe cracking or failure. Estimation of these stresses from 3D optical displacement measurements requires shotcrete material models, which may preferentially consider variations in the water–cement and aggregate–cement ratios. Therefore, we employ two representative volume elements within a continuum micromechanics framework: the first one relates to cement paste (with a spherical material phase representing cement clinker grains, needle-shaped hydrate phases with isotropically distributed spatial orientations, a spherical water phase, and a spherical air phase; all being in mutual contact), and the second one relates to shotcrete (with phases representing cement paste and aggregates, whereby aggregate inclusions are embedded into a matrix made up by cement paste). Elasticity homogenization follows self-consistent schemes (at the cement paste level) and Mori–Tanaka estimates (at the shotcrete level), and stress peaks in the hydrates related to quasi-brittle material failure are estimated by second-order phase averages derived from the RVE-related elastic energy. The latter permits upscaling from the hydrate strength to the shotcrete strength. Experimental data from resonant frequency tests, ultrasonics tests, adiabatic tests, uniaxial compression tests, and nanoindentation tests suggest that shotcrete elasticity and strength can be reasonably predicted from mixture- and hydration-independent elastic properties of aggregates, clinker, hydrates, water, and air, and from strength properties of hydrates. At the structural level, the micromechanics model, when combined with 3D displacement measurements, predicts that a decrease of the water–cement ratio increases the safety of the shotcrete tunnel shell.

Keywords

Elasticity Hydration Micromechanics New Austrian tunneling method Shotcrete Strength Tunneling 

Notes

Acknowledgments

This work was part of the micromechanics-based activities within the integrated project “Technology Innovation in Underground Construction—TUNCONSTUCT” (http://www.tunconstruct.org), co-sponsored by the European Commission. The authors are indebted to Nora Pillar (Universidade Federal de Santa Catarina, Florianopolis, Brazil) for the communication of experimental results on shotcrete, to Wulf Schubert (Institute of Rock Mechanics and Tunnelling, Graz University of Technology, Austria) for providing measurement data of the Sieberg tunnel, to Markus Brandtner, Bernd Moritz, and Peter Schubert (IGT consulting engineers, Salzburg) for sharing their experience with the hybrid method in situ, and to Olga Río as well as to Luis Fernández-Luco (Institute of Construction Sciences Eduardo Torroja, High Council of Scientific Research, Madrid, Spain) for interesting discussions on the role of the accelerator in shotcrete technology.

References

  1. 1.
    Acker P (2001) Micromechanical analysis of creep and shrinkage mechanisms. In: Ulm F-J, Bažant Z, Wittmann F (eds) Creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, 6th international conference CONCREEP@MIT. Amsterdam, Elsevier, pp 15–26Google Scholar
  2. 2.
    Acker P, Ulm F-J (2001) Creep and shrinkage of concrete: physical origins and practical measurements. Nucl Eng Des 203(2/3):143–158CrossRefGoogle Scholar
  3. 3.
    Baroghel-Bouny V (1994) Caractérisation des pâtes de ciment et des bétons—méthodes, analyse, interprétation [Characterization of cement pastes and concretes—methods, analysis, interpretations] (in French). Technical report, Laboratoire Central des Ponts et Chaussées, Paris, FranceGoogle Scholar
  4. 4.
    Barthélémy J-F, Dormieux L (2003) Détermination du critère de rupture macroscopique d’un milieu poreux par homogénéisation non linèaire [Determination of the macroscopic strength criterion of a porous medium by nonlinear homogenization] (In French). C R Mec 331(4):271–276CrossRefzbMATHGoogle Scholar
  5. 5.
    Benveniste Y (1987) A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6(2):147–157CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bernard O, Ulm F-J, Lemarchand E (2003) A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cem Concr Res 33(9):1293–1309CrossRefGoogle Scholar
  7. 7.
    Boumiz A, Vernet C, Cohen-Tenoudji F (1996) Mechanical properties of cement pastes and mortars at early ages. Adv Cem Based Mat 3(3/4):94–106Google Scholar
  8. 8.
    Brandtner P, Moritz B, Schubert P (2007) On the challenge of evaluating stress in a shotcrete lining: experiences gained in applying the hybrid analysis method. Felsbau 25(5):93–98Google Scholar
  9. 9.
    Byfors J (1980) Plain concrete at early ages. Technical report, Swedish Cement and Concrete Research Institute, Stockholm, SwedenGoogle Scholar
  10. 10.
    Celestino T, de Mariano M, Ferreira A, Guimaraes M (1997) Undercoring technique for stress measurement in shotcrete linings. In: Golser J, Hinkel W, Schubert W (eds) Tunnels for people, proceedings of the world tunnel congress 1997, Vienna, Austria. Balkema, Rotterdam, pp 59–64Google Scholar
  11. 11.
    Constantinides G, Ulm F-J (2004) The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem Concr Res 34(1):67–80CrossRefGoogle Scholar
  12. 12.
    Cowin S, Mehrabadi M (1992) The structure of the linear anisotropic elastic symmetries. J Mech Phys Solids 40(7):1459–1471zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dormieux L, Kondo D, Ulm F-J (2006) Microporomechanics. Wiley, New YorkzbMATHGoogle Scholar
  14. 14.
    Dormieux L, Molinari A, Kondo D (2002) Micromechanical approach to the behavior of poroelastic materials. J Mech Phys Solids 50(10):2203–2231zbMATHCrossRefGoogle Scholar
  15. 15.
    Dormieux L, Sanahuja J, Maalej Y (2007) Résistance d’un polycristal avec interfaces intergranulaires imparfaites [Strength of a polycrystal with imperfect intergranular interfaces] (in French). C R Mec 335(1):25–31zbMATHGoogle Scholar
  16. 16.
    Drugan W, Willis J (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396. Reprinted in: Markenscoff X, Gupta A (eds) (2006) Collected works of J. D. Eshelby—the mechanics of defects and inhomogeneities, vol 133 of solid mechanics and its applications. Springer, BerlinzbMATHMathSciNetGoogle Scholar
  18. 18.
    Fedorov F (1968) Theory of elastic waves in crystals. Plenum Press, New YorkGoogle Scholar
  19. 19.
    Fritsch A, Dormieux L, Hellmich C (2006) Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties. C R Mec 334(3):151–157zbMATHGoogle Scholar
  20. 20.
    Fritsch A, Dormieux L, Hellmich C, Sanahuja J (2007) Micromechanics of crystal interfaces in polycrystalline solid phases of porous media: fundamentals and application to strength of hydroxyapatite biomaterials. J Mater Sci 42(21):8824–8837CrossRefGoogle Scholar
  21. 21.
    Fritsch A, Hellmich C (2007) Universal microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244(4):597–620CrossRefGoogle Scholar
  22. 22.
    Hashin Z (1983) Analysis of composite materials—a survey. J Appl Mech 50(3):481–505zbMATHCrossRefGoogle Scholar
  23. 23.
    Helbig K (1994) Foundations of anisotropy for exploration seismics. Pergamon, New YorkGoogle Scholar
  24. 24.
    Hellmich C (1999) Shotcrete as part of the new Austrian tunneling method: from thermochemomechanical material modeling to structural analysis and safety assessment of tunnels. PhD Thesis, Vienna University of Technology, Vienna, AustriaGoogle Scholar
  25. 25.
    Hellmich C, Barthélémy J-F, Dormieux L (2004) Mineral-collagen interactions in elasticity of bone ultrastructure - a continuum micromechanics approach. Eur J Mech A Solids 23(5):783–810zbMATHCrossRefGoogle Scholar
  26. 26.
    Hellmich C, Macht J, Mang H (1999) Ein hybrides Verfahren zur Bestimmung der Auslastung von Spritzbetonschalen [A hybrid method for determination of the level of utilization of shotcrete shells] (in German). Felsbau 17(5):422–425Google Scholar
  27. 27.
    Hellmich C, Mang H (2005) Shotcrete elasticity revisited in the framework of continuum micromechanics: from submicron to meter level. J Mater Civil Eng (ASCE) 17(3):246–256CrossRefGoogle Scholar
  28. 28.
    Hellmich C, Mang H, Ulm F-J (2001) Hybrid method for quantification of stress states in shotcrete tunnel shells: combination of 3D in situ displacement measurements and thermochemoplastic material law. Comput Struct 79(22–25):2103–2115CrossRefGoogle Scholar
  29. 29.
    Hellmich C, Ulm F-J (2002) Micromechanical model for ultra-structural stiffness of mineralized tissues. J Eng Mech (ASCE) 128(8):898–908CrossRefGoogle Scholar
  30. 30.
    Hellmich C, Ulm F-J (2005) Drained and undrained poroelastic properties of healthy and pathological bone: a poro-micromechanical investigation. Transp Porous Media 58(3):243–268CrossRefGoogle Scholar
  31. 31.
    Hellmich C, Ulm F-J, Mang H (1999) Consistent linearization in Finite Element analysis of coupled chemo-thermal problems with exo- or endothermal reactions. Comput Mech 24(4):238–244zbMATHCrossRefGoogle Scholar
  32. 32.
    Hellmich C, Ulm F-J, Mang H (1999) Multisurface chemoplasticity I: material model for shotcrete. J Eng Mech (ASCE) 125(6):692–701CrossRefGoogle Scholar
  33. 33.
    Helnwein P (2001) Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors. Comput Methods Appl Mech Eng 190(22/23):2753–2770zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Hershey A (1954) The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech (ASME) 21:226–240Google Scholar
  35. 35.
    Hill R (1963) Elastic properties of reinforced solids. J Mech Phys Solids 11(5):357–372zbMATHCrossRefGoogle Scholar
  36. 36.
    Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15(2):79–95CrossRefGoogle Scholar
  37. 37.
    Hofstetter G, Mang H (1995) Computational mechanics of reinforced concrete structures. Vieweg & Sohn Verlagsgesellschaft mbHm Braunschweig, BraunschweigzbMATHGoogle Scholar
  38. 38.
    Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Predicting wood strength from composition and microstructure: development and experimental verification of a continuum micromechanics model. In: Dormieux L, Kondo D, Sab K (eds) Colloque en l’honneur du Professor Jean-Louis Auriault: microstructure et propriétés des matériaux. Presses de l’Ecole Nationale des Ponts et Chaussées, pp 217–222Google Scholar
  39. 39.
    Indelicato F, Paggi M (2008) Specimen shape and the problem of contact in the assessment of concrete compressive strength. Mater Struct 41(2):431–441CrossRefGoogle Scholar
  40. 40.
    Kreher W (1990) Residual stresses and stored elastic energy of composites and polycrystals. J Mech Phys Solids 38(1):115–128zbMATHCrossRefGoogle Scholar
  41. 41.
    Kreher W, Molinari A (1993) Residual stresses in polycrystals as influenced by grain shape and texture. J Mech Phys Solids 41(12):1955–1977zbMATHCrossRefGoogle Scholar
  42. 42.
    Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls [Computation of the elastic constants of a polycrystal based on the constants of the single crystal] (in German). Z Phys A Hadrons Nucl 151(4):504–518Google Scholar
  43. 43.
    Lackner R, Macht J, Hellmich C, Mang H (2002) Hybrid method for analysis of segmented shotcrete tunnel linings. J Geotech Geoenviron Eng (ASCE) 128(4):298–308CrossRefGoogle Scholar
  44. 44.
    Lackner R, Macht J, Mang H (2006) Hybrid analysis method for on-line quantification of stress states in tunnel shells. Comput Methods Appl Mech Eng 195(41–43):5361–5378zbMATHCrossRefGoogle Scholar
  45. 45.
    Lafarge (1997) Internal report, Lafarge Centre Technique Europe Central. Commissioned by the Institute for Strength of Materials, Vienna University of Technology, AustriaGoogle Scholar
  46. 46.
    Lafarge (2002) Internal report, Lafarge Centre Technique Europe Central. Commissioned by the Institute for Strength of Materials, Vienna University of Technology, AustriaGoogle Scholar
  47. 47.
    Laws N (1977) The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material. J Elast 7(1):91–97zbMATHMathSciNetGoogle Scholar
  48. 48.
    Lechner M, Hellmich C, Mang H (2001) Short-term creep of shotcrete—thermochemoplastic material modelling and nonlinear analysis of a laboratory test and of a NATM excavation by the finite element method. In: Vermeer P, Diebels S, Ehlers W, Herrmann H, Luding S, Ramm E (eds) Proceedings of the international symposium on discontinuous modelling of cohesive-frictional materials—Lecture Notes in Physics. Springer, Berlin, pp 47–62CrossRefGoogle Scholar
  49. 49.
    Lemarchand E, Ulm F-J, Dormieux L (2002) Effect of inclusions on friction coefficient of highly filled composite materials. J Eng Mech (ASCE) 128(8):876–884CrossRefGoogle Scholar
  50. 50.
    Macht J, Hellmich C, Lackner R, Schubert W, Mang H (2000) Assessment of a support system for squeezing rock conditions by means of a hybrid method. Felsbau 18(6):9–15Google Scholar
  51. 51.
    Macht J, Lackner R, Hellmich C, Mang H (2001) Shotcrete creep properties – review of material tests and structural analyses of tunnels. In: Ulm F-J, Bažant Z, Wittmann F (eds) Proceedings of the 6th international conference on creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials. Elsevier Science, Amsterdam, pp 285–300Google Scholar
  52. 52.
    Macht J, Lackner R, Hellmich C, Mang H (2003) Quantification of stress states in shotcrete shells. In: Beer G (ed) Numerical simulation in tunneling. Springer, Wien, pp 225–248, chapter 10Google Scholar
  53. 53.
    Mang H, Hofstetter G (2004) Festigkeitslehre [Strength of materials], 2nd edn. Springer, WienGoogle Scholar
  54. 54.
    Mehlhorn G (1996) Der Ingenieurbau: Grundwissen–Werkstoffe, Elastizitätstheorie [Basic knowledge in civil engineering: materials and elasticity theory], vol 4 (in German). Ernst & Sohn, BerlinGoogle Scholar
  55. 55.
    Meschke G (1996) Consideration of aging of shotcrete in the context of a 3-D viscoplastic material model. Int J Numer Methods Eng 39(18):3123–3143zbMATHCrossRefGoogle Scholar
  56. 56.
    Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Methods Eng 55(11):1285–1322zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurg 21:571–574CrossRefGoogle Scholar
  58. 58.
    Müller L (1978) Der Felsbau—Tunnelbau [Constructions in rock—tunnelling], vol 4. Springer, StuttgartGoogle Scholar
  59. 59.
    Neville A (1981) Properties of concrete, 3rd edn. Pitman Publishing Limited, LondonGoogle Scholar
  60. 60.
    Pacher F (1964) Deformationsmessungen im Versuchsstollen als Mittel zur Erforschung des Gebirgsverhaltens und zur Bemessung des Ausbaus [Measurements of deformations in experimental tunnels to explore the behavior of rock and to design the lining] (in German). Felsmech Ingenieurgeol I:149–161Google Scholar
  61. 61.
    Pichler B, Hellmich C, Eberhardsteiner J (2008) Spherical and acicular representation of hydrates in a micromechanical model for cement paste—prediction of early-age elasticity and strength. Acta Mech (in press). doi: 10.1007/s00707-008-0007-9
  62. 62.
    Pillar N (2002) Determination of early age properties of fibre reinforced shotcrete to predict the cracking behavior. PhD Thesis, submitted at University of New South Wales, Private Communication, Sydney, AustraliaGoogle Scholar
  63. 63.
    Rabcewicz L (1948) Patentschrift. Österreichisches Patent Nr. 165573 (patent specification, Austrian patent no. 165573) (in German)Google Scholar
  64. 64.
    Rabcewicz L, Golser J, Hackl E (1972) Die Bedeutung der Messung im Hohlraumbau, Teil I [The significance of measurement in tunneling] (in German). Der Bauingenieur 47(7):225–234Google Scholar
  65. 65.
    Rokahr R, Lux K (1987) Einfluß des rheologischen Verhaltens des Spritzbetons auf den Ausbauwiderstand [Influence of the rheological behavior of shotcrete on the excavation resistance]. Felsbau 5:11–18Google Scholar
  66. 66.
    Rokahr R, Zachow R (1997) Ein neues Verfahren zur täglichen Kontrolle der Auslastung einer Spritzbetonschale [A new method for a daily monitoring of the stress intensity of a sprayed concrete lining] (in German). Felsbau 15(6):430–434Google Scholar
  67. 67.
    Sanahuja J (2008) Impact de la morphologie structurale sur les performances mécaniques des matériaux de construction: application au plâtre et à la pâte de ciment [Impact of the structural morphology on the mechanical performance of building materials: application to gypsum and to cement paste] (in French). PhD Thesis, Ecole Nationale des Ponts et ChausséesGoogle Scholar
  68. 68.
    Sanahuja J, Dormieux L, Chanvillard G (2007) Modelling elasticity of a hydrating cement paste. Cem Concr Res 37(10):1427–1439 CrossRefGoogle Scholar
  69. 69.
    Schubert P (1988) Beitrag zum rheologischen Verhalten von Spritzbeton [Contribution to the rheological behavior of shotcrete]. Felsbau 6:150–153Google Scholar
  70. 70.
    Schubert W, Steindorfer A (1996) Selective displacement monitoring during tunnel excavation. Felsbau 14(2):93–97Google Scholar
  71. 71.
    Schubert W, Steindorfer A, Button E (2002) Displacement monitoring in tunnels—an overview. Felsbau 20(2):7–15Google Scholar
  72. 72.
    Sercombe J, Hellmich C, Ulm F-J, Mang H (2000) Modeling of early-age creep of shotcrete I: model and model parameters. J Eng Mech (ASCE) 126(3):284–291CrossRefGoogle Scholar
  73. 73.
    Steindorfer A, Schubert W, Rabensteiner K (1995) Problemorientierte Auswertung geotechnischer Messungen [Advanced analysis of geotechnical displacement monitoring data new tools and examples of application] (in German). Felsbau 13(6):386–390Google Scholar
  74. 74.
    Stroud A (1971) Approximate calculation of multiple integrals. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  75. 75.
    Sun Z, Ye G, Shah S (2005) Microstructure and early-age properties of portland cement paste effects of connectivity of solid phases. ACI Mater J 102(1):122–129Google Scholar
  76. 76.
    Suquet P (1987) Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media, vol 272 of Lecture Notes in Physics. Springer, Berlin, pp 194–278, chapter 4Google Scholar
  77. 77.
    Suquet P (1997) Continuum micromechanics, vol 377 of CISM Courses and Lectures. Springer, WienGoogle Scholar
  78. 78.
    Tritthart J, Häußler F (2003) Pore solution analysis of cement pastes and nanostructural investigations of hydrated C3S. Cem Concr Res 33(7):1063–1070CrossRefGoogle Scholar
  79. 79.
    Ulm F-J, Constantinides G, Heukamp F (2004) Is concrete a poromechanics material?—a multiscale investigation of poroelastic properties. Mater Struct/Mater Construct 37(1):43–58Google Scholar
  80. 80.
    Ulm F-J, Coussy O (1996) Strength growth as chemo-plastic hardening in early age concrete. J Eng Mech (ASCE) 122(12):1123–1132CrossRefGoogle Scholar
  81. 81.
    van Mier J (1984) Strain softening of concrete under multiaxial loading conditions. PhD Thesis, TH Eindhoven, Eindhoven, The NetherlandsGoogle Scholar
  82. 82.
    Wesche K (1974) Baustoffe für tragende Bauteile [Building materials for structural components], 3rd edn (in German). Bauverlag, WiesbadenGoogle Scholar
  83. 83.
    Zaoui A (1997) Structural morphology and constitutive behavior of microheterogeneous materials. In: Suquet P (ed) Continuum micromechanics. Springer, Vienna, pp 291–347Google Scholar
  84. 84.
    Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech (ASCE) 128(8):808–816CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Bernhard Pichler
    • 1
    Email author
  • Stefan Scheiner
    • 1
  • Christian Hellmich
    • 1
  1. 1.Institute for Mechanics of Materials and StructuresVienna University of Technology (TU Wien)ViennaAustria

Personalised recommendations