Advertisement

Acta Geotechnica

, Volume 2, Issue 2, pp 113–126 | Cite as

Hypoplastic material constants for a well-graded granular material for base and subbase layers of flexible pavements

  • H. A. Rondón
  • T. WichtmannEmail author
  • Th. Triantafyllidis
  • A. Lizcano
Research Paper

Abstract

This paper presents the results of the first phase of a research project dealing with the constitutive description of the behaviour of well-graded granular materials when used for base or subbase layers in flexible pavement structures (so-called “unbound granular materials”, UGMs). Monotonic and cyclic loading is under consideration. The present paper concentrates on test results and the constitutive description of monotonic loading. Hypoplasticity in the version proposed by von Wolffersdorff is used as the constitutive model. Sets of material constants for typical UGM materials do not exist in the literature. The experimental determination of a set of constants according to the procedure proposed by Herle is described in this paper. In the monotonic triaxial tests specimens with a square cross-section were used. The paper presents a preliminary test series comparing triaxial results obtained with cylindrical and with prismatic specimens. Re-calculations of the element tests are also presented. The simulations show a good congruence with the experiments.

Keywords

Flexible pavements Hypoplasticity Material constants Monotonic loading Unbound granular material Well-graded granular material 

Notes

Acknowledgments

The experimental work was done at the Institute of Soil Mechanics and Foundation Engineering at Ruhr-University Bochum. The stay of H. Rondón in Bochum was financed by scholarships of Colciencias and DAAD which is gratefully acknowledged herewith. Furthermore, the authors want to thank the laboratory assistants M. Skubisch and B. Kaminski for carefully performing the experiments.

References

  1. 1.
    Asphalt Institute (AI) (1982) Research and Development of the Asphalt Institute’s Thickness Design Manual MS - 1, 9th Ed., College Park, MdGoogle Scholar
  2. 2.
    Anh Dan LQ, Tatsuoka F, Koseki J (2003) Viscous shear stress-strain characteristics of dense gravel in triaxial compression. Geotechnical and Geological EngineeringGoogle Scholar
  3. 3.
    AUSTROADS (1992) Pavement Design - A Guide to the Structural Design of Road Pavement, Sydney - AustraliaGoogle Scholar
  4. 4.
    American Association of State Highway and Transportation Officials (AASHTO) (1986) Guide for Design of Pavement Structures, Washington, DCGoogle Scholar
  5. 5.
    American Association of State Highway and Transportation Officials (AASHTO) (1993) Guide for Design of Pavement Structures, Washington, DCGoogle Scholar
  6. 6.
    Barksdale RD, Itani SY (1989) Influence of Aggregate Shape on Base Behaviour. Transportation Research Record (1227):173 – 182Google Scholar
  7. 7.
    Bauer E (1996) Calibration of a comprehensive constitutive equation for granular materials. Soils and Foundations 36:13–26Google Scholar
  8. 8.
    Bishop AW, Green GE (1965) The influence of end restraint on the compression strength of a cohesionless soil. Géotechnique 15(3):243–266CrossRefGoogle Scholar
  9. 9.
    Bühler M (2006) Experimental and numerical investigation of soil-foundation-structure interaction during monotonic, alternating and dynamic loading. Dissertation, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik, Universität Karlsruhe, Heft 166Google Scholar
  10. 10.
    COST 337 (2000) Unbound Granular Materials for Road Pavements, Final Report of the Action. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  11. 11.
    Cudmani R (2004) Modelación numérica de estructuras geotécnicas y taludes durante terremotos de gran magnitud. In: X Congreso y V Seminario Colombianos de GeotecniaGoogle Scholar
  12. 12.
    Cudmani R (2001) Statische, alternierende und dynamische Penetration in nichtbindige Böden. Dissertation, Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft 152Google Scholar
  13. 13.
    Dawson AR, Mundy MJ, Huhtala M (2000) European Research into Granular Material for Pavement Bases and Subbases. Transportation Research Record, pp 91–99Google Scholar
  14. 14.
    Goto S, Tatsuoka F, Shibuya S, Kim Y-S, Sato T (1991) A simple gauge for local small strain measurements in the laboratory. Soils and Foundations 31(1):169–180Google Scholar
  15. 15.
    Hayano K, Matsumoto M, Tatsuoka F, Koseki J (2001) Evaluation of time-dependent deformation properties of sedimentary soft rock and their constitutive modeling. Soils and Foundations 41(2):21–38Google Scholar
  16. 16.
    Herle I (1997) Hypoplastizität und Granulometrie einfacher Korngerüste. Promotion, Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft Nr. 142Google Scholar
  17. 17.
    Herle I (2000) Granulometric Limits of Hypoplastic Models. Institute of Theoretical and Applied Mechanics, Czech Academy of Sciences, Prosecká, Task Quarterly, Scientific Bulletin of Academic Computer Centre in Gdansk 4(3):389–408Google Scholar
  18. 18.
    Herle I, Gudehus G (1999) Determination of Parameters of a Hypoplastic Constitutive Model from Properties of Grain Assemblies. Mechanics of Cohesive-Frictional Materials 4(5):461–486CrossRefGoogle Scholar
  19. 19.
    HMSO (1994) Design Manual for Roads and Bridges. Vol 7, HD 25/94, part 2, FoundationsGoogle Scholar
  20. 20.
    Hoque E, Sato T, Tatsuoka F (1997) Performance evaluation of LDTs for use in triaxial tests. Geotechnical and Geological Engineering 20(2):149–167Google Scholar
  21. 21.
    IDU (2002) Instituto de Desarrollo Urbano and Universidad de Los Andes, Manual de Diseno de Pavimentos para Bogotá. Bogotá D.C., ColombiaGoogle Scholar
  22. 22.
    INVIAS Instituto Nacional de Vías (2002) Manual de Diseño de Pavimentos Asfálticos en vías con Bajos, Medios y Altos volúmenes de Tránsito. Bogotá D.C., ColombiaGoogle Scholar
  23. 23.
    Jiang G-L, Tatsuoka F, Flora A, Koseki J (1997) Inherent and stress-state-induced anisotropy in very small strain stiffness of a sandy gravel. Géotechnique 47(3):509–521Google Scholar
  24. 24.
    Kolymbas D (1991) An outline of hypoplasticity. Archive of Applied Mechanics 61:143–151Google Scholar
  25. 25.
    Kongsukprasert L, Kuwano R, Tatsuoka F (2001) Effects of ageing with shear stress on the stress-strain behaviour of cement-mixed sand. In: Tatsuoka, et al. (ed) Advanced laboratory stress-strain testing of geomaterials. Balkema, pp 251–258Google Scholar
  26. 26.
    Lekarp F, Isacsson U, Dawson A (2000) State of the art. II: Permanent strain response of unbound aggregates. Journal of Transportation Engineering 126(1):76–83CrossRefGoogle Scholar
  27. 27.
    Libreros Bertini AB (2006) Hypo- und viskohypoplastische Modellierung von Kriech- und Rutschbewegungen, besonders infolge Starkbeben. Dissertation, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik, Universität Karlsruhe, Heft 165Google Scholar
  28. 28.
    Matsuoka H, Nakai T (1982) A new failure for soils in three-dimensional stresses. In: Deformation and Failure of Granular Materials. Proc. IUTAM Symp. in Delft, pp 253–263Google Scholar
  29. 29.
    Morgan JR (1966) The Response of Granular Materials to Repeated Loading. In Proc., 3rd Conf., ARRBGoogle Scholar
  30. 30.
    Nawir H, Tatsuoka F, Kuwano R (2003) Experimental evaluation of the viscous properties of sand in shear. Soils and Foundations 43(6):13–32Google Scholar
  31. 31.
    Nicholson PG, Seed RB, Anwar HA (1993) Elimination of membrane compliance in undrained triaxial testing. I. Measurement and evaluation. Canadian Geotechnical Journal 30:727–738CrossRefGoogle Scholar
  32. 32.
    Niemunis A (2000) Akkumulation der Verformung infolge zyklischer Belastung – numerische Strategien. In Beiträge zum Workshop: Boden unter fast zyklischer Belastung: Erfahrungen und Forschungsergebnisse, Veröffentlichungen des Institutes für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Heft Nr. 32, pp 1–20Google Scholar
  33. 33.
    Niemunis A (2003) Extended hypoplastic models for soils. Habilitation, Veröffentlichungen des Institutes für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Heft Nr. 34, 2003. available from http://www.pg.gda.pl/∼aniem/an-liter.html
  34. 34.
    Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials 2:279–299CrossRefGoogle Scholar
  35. 35.
    Niemunis A, Wichtmann T, Triantafyllidis T (2005) A high-cycle accumulation model for sand. Computers and Geotechnics 32(4):245–263CrossRefGoogle Scholar
  36. 36.
    Rondón HA, Lizcano A (2006) Modelos de comportamiento de materiales granulares para pavimentos y aplicación de la ley constitutiva hipoplástica. In: III Jornadas Internacionales de Ingeniera Civil. CubaGoogle Scholar
  37. 37.
    Schünemann A (2006) Numerische Modelle zur Beschreibung des Langzeitverhaltens von Eisenbahnschotter unter alternierender Beanspruchung. Dissertation, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik, Universität Karlsruhe, Heft 168Google Scholar
  38. 38.
    Sweere GTH (1990) Unbound granular bases for roads. PhD thesis, Delft University of Technology, NetherlandsGoogle Scholar
  39. 39.
    Shell International Petroleum Company (1978) Shell Pavement Design Manual. Asphalt Pavement and Overlays for Road Traffic, LondonGoogle Scholar
  40. 40.
    TRL Transport Research Laboratory (1993) A Guide to the Structural Design of Bitumen-Surfaced Roads in Tropical and Sub-tropical Countries. RN31, Draft 4th editionGoogle Scholar
  41. 41.
    von Wolffersdorff P-A (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials 1:251–271CrossRefGoogle Scholar
  42. 42.
    Wehr WCS (1999) Granulatumhüllte Anker und Nägel - Sandanker. Dissertation, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik, Universität Karlsruhe, Heft 146Google Scholar
  43. 43.
    Werkmeister S, Dawson A, Wellner F (2001) Permanent Deformation Behaviour of Granular Materials and the Shakedown Concept. Transportation Research Record (1757):75–81Google Scholar
  44. 44.
    Werkmeister S, Dawson A, Wellner F (2004) Pavement Design Model of Unbound Granular Materials. Journal of Transportation Engineering, 130:665–674CrossRefGoogle Scholar
  45. 45.
    Wichtmann T (2005) Explicit accumulation model for non-cohesive soils under cyclic loading. Dissertation, Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum, Heft 38Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • H. A. Rondón
    • 1
  • T. Wichtmann
    • 2
    Email author
  • Th. Triantafyllidis
    • 2
  • A. Lizcano
    • 1
  1. 1.Department of Civil and Environmental EngineeringLos Andes UniversityBogotá D. C.Colombia
  2. 2.Institute of Soil Mechanics and Rock MechanicsUniversity of KarlsruheKarlsruheGermany

Personalised recommendations