Acta Geotechnica

, 1:59 | Cite as

Experimental evidence of a unique flow rule of non-cohesive soils under high-cyclic loading

  • T. WichtmannEmail author
  • A. Niemunis
  • Th. Triantafyllidis
Research Paper


The presented results of cyclic triaxial tests on sand demonstrate that the cumulative effects due to small cycles obey a kind of flow rule. It mainly depends on the average stress ratio about which the cycles are performed. This so-called “cyclic flow rule” is unique and can be well approximated by flow rules for monotonic loading. Amongst others it is shown that the cyclic flow rule is only moderately influenced by the average mean pressure, by the strain loop (span, shape, polarization), the void ratio, the loading frequency, the static preloading and the grain size distribution curve. A slight increase of the compactive portion of the flow rule with increasing residual strain (due to the previous cycles) was observed. These experimental findings prove that the cyclic flow rule is an essential and indispensable concept in explicit (N-type) accumulation models.


Cyclic flow rule Direction of strain accumulation Cyclic triaxial tests Sand 



This study was conducted as a part of the project A8 “Influence of the fabric change in soil on the lifetime of structures”, supported by the German Research Council (DFG) within the Collaborate Research Centre SFB 398 “Lifetime oriented design concepts”. The authors are indepted to DFG for the financial support.


  1. 1.
    Bouckovalas G, Whitman RV, Marr WA (1984) Permanent displacement of sand with cyclic loading. J Geotech Eng ASCE 110(11):1606–1623Google Scholar
  2. 2.
    Chang CS, Whitman RV (1988) Drained permanent deformation of sand due to cyclic loading. J Geotech Eng ASCE 114(10):1164–1180Google Scholar
  3. 3.
    Diyaljee VA, Raymond GP (1982) Repetitive load deformation of cohesionless soil. J Geotech Eng ASCE 108(GT10):1215–1229Google Scholar
  4. 4.
    Gotschol A (2002) Veränderlich elastisches und plastisches Verhalten nichtbindiger Böden und Schotter unter zyklisch-dynamischer Beanspruchung. Dissertation, Universität Gh Kassel 2002Google Scholar
  5. 5.
    Gudehus G (1996) A comprehensive constitutive equation for granular materials. Soils Found 36:1–12Google Scholar
  6. 6.
    Güttler U (1984) Beurteilung des Steifigkeits- und Nachverdichtungsverhaltens von ungebundenen Mineralstoffen. Schriftenreihe des Instituts für Grundbau, Wasserwesen und Verkehrswesen, Heft 8Google Scholar
  7. 7.
    Kaggwa WS, Booker JR, Carter JP (1991) Residual strains in calcareous sand due to irregular cyclic loading. J Geotech Eng ASCE 117(2):201–218CrossRefGoogle Scholar
  8. 8.
    Kolymbas D (1991) An outline of hypoplasticity. Arch Appl Mech 61:143–151zbMATHGoogle Scholar
  9. 9.
    Luong MP (1982) Mechanical aspects and thermal effects of cohesionless soils under cyclic and transient loading. In: Proceedings of the IUTAM conference on deformation and failure of granular materials, Delft, pp 239–246Google Scholar
  10. 10.
    Marr WA, Christian JT (1981) Permanent displacements due to cyclic wave loading. J Geotech Eng ASCE 107(GT8):1129–1149Google Scholar
  11. 11.
    Mróz Z, Norris VA, Zienkiewicz OC (1978) An anisotropic hardening model for soils and its application to cyclic loading. Int J Num Anal Methods Geomech 2:203–221CrossRefzbMATHGoogle Scholar
  12. 12.
    Niemunis A (2000) Akkumulation der Verformung infolge zyklischer Belastung - numerische Strategien. In: Beiträge zum Workshop: Boden unter fast zyklischer Belastung: Erfahrungen und Forschungsergebnisse, Veröffentlichungen des Institutes für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Heft Nr. 32, pp 1–20Google Scholar
  13. 13.
    Niemunis A (2003) Extended hypoplastic models for soils. Habilitation, Veröffentlichungen des Institutes für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Heft Nr. 34. available from∼aniem/an-liter.html
  14. 14.
    Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohes Frict Mater 2:279–299CrossRefGoogle Scholar
  15. 15.
    Niemunis A, Wichtmann T, Triantafyllidis Th (2005) A high-cycle accumulation model for sand. Comput Geotech 32(4):245–263CrossRefGoogle Scholar
  16. 16.
    Sawicki A, Swidziński W (1987) Compaction curve as one of basic characteristics of granular soils. In: Flavigny E, Cordary D (eds) 4th Colloque Franco-Polonais de Mechanique des Sols Appliquee, Grenoble, vol 1, pp 103–115Google Scholar
  17. 17.
    Sawicki A, Świdziński W (1989) Mechanics of a sandy subsoil subjected to cyclic loadings. Int J Num Anal Methods Geomech 13:511–529CrossRefGoogle Scholar
  18. 18.
    Suiker ASJ, de Borst R (2003) A numerical model for the cyclic deterioration of railway tracks. Int J Num Methods Eng 57:441–470CrossRefzbMATHGoogle Scholar
  19. 19.
    Suiker ASJ, Selig ET, Frenkel R (2005) Static and cyclic triaxial testing of ballast and subballast. J Geotech Geoenviron Eng ASCE 131(6):771–782CrossRefGoogle Scholar
  20. 20.
    Valanis KC, Lee CF (1984) Endochronic theory of cyclic plasticity with applications. J Appl Mech 51:367–374zbMATHCrossRefGoogle Scholar
  21. 21.
    von Wolffersdorff P-A (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohes Frict Mater 1:251–271CrossRefGoogle Scholar
  22. 22.
    von Wolffersdorff P-A, Schwab R (2001) Schleuse Uelzen I - Hypoplastische Finite-Elemente-Analyse von zyklischen Vorgängen. Bautechnik 78(11):771–782Google Scholar
  23. 23.
    Wichtmann T (2005) Explicit accumulation model for non-cohesive soils under cyclic loading. Dissertation, Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum, Heft 38Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • T. Wichtmann
    • 1
    Email author
  • A. Niemunis
    • 1
  • Th. Triantafyllidis
    • 1
  1. 1.Institute of Soil Mechanics and Foundation EngineeringRuhr-University BochumBochumGermany

Personalised recommendations