Science Bulletin

, Volume 61, Issue 8, pp 632–638 | Cite as

Super-resolution imaging and tracking of TGF-β receptor II on living cells

  • Zi Ye
  • Nan Li
  • Libo Zhao
  • Yahong Sun
  • Hefei Ruan
  • Mingliang Zhang
  • Jinghe Yuan
  • Xiaohong FangEmail author
Article Chemistry


Single-particle tracking photoactivated localization microscopy (sptPALM) has recently emerged as a powerful tool for high-density imaging and tracking of individual molecules in living cells. In this work, we have monitored and compared the diffusion dynamics of TGF-β type II receptor (TβRII) at high expression level using both traditional single-particle tracking (SPT) and sptPALM. The ligand-induced aggregation of TβRII oligomers was further indicated by sptPALM. Due to the capacity of distinguishing and tracking single molecules within diffraction limit, sptPALM outperforms traditional SPT by providing more accurate biophysical information.


Single-particle tracking Photoactivated localization microscopy Single-molecule fluorescence imaging TGF-β receptor II Membrane diffusion 



用于单粒子示踪的光活化定位显微镜(sptPALM)是研究活细胞中单分子高密度成像和追踪的一种新的有效工具。本文分别利用传统的单粒子追踪方法(SPT)和sptPALM对高表达的 转化生长因子 TGF-β二型受体(TβRII)在细胞膜上的扩散运动进行了表征和比较,同时用sptPALM证实配体刺激下TβRII寡聚体进一步聚集。由于sptPALM可区分并追踪处于衍射极限内的多个单分子,它优于传统的SPT方法,能提供更准确的生物分子动态变化信息。


单粒子追踪 光活化定位显微镜 单分子荧光成像 TGF-β二型受体 膜上扩散运动 



This work was supported by the National Basic Research Program of China (2013CB933701), the National Natural Science Foundation of China (21127901, 91413119, 91213305) and the Chinese Academy of Science.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11434_2016_1043_MOESM1_ESM.doc (208 kb)
Supplementary material 1 (DOC 208 kb)

Supplementary material 2 (MPG 3558 kb)


  1. 1.
    Boyd FT, Massague J (1989) Transforming growth factor-beta inhibition of epithelial-cell proliferation linked to the expression of a 53-kDa membrane-receptor. J Biol Chem 264:2272–2278Google Scholar
  2. 2.
    Massague J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14:627–644Google Scholar
  3. 3.
    Miyazono K (2000) Positive and negative regulation of TGF-beta signaling. J Cell Sci 113:1101–1109Google Scholar
  4. 4.
    ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273CrossRefGoogle Scholar
  5. 5.
    Wrana JL, Attisano L, Wieser R et al (1994) Mechanism of activation of the TGF-beta receptor. Nature 370:341–347CrossRefGoogle Scholar
  6. 6.
    Douglass AD, Vale RD (2005) Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121:937–950CrossRefGoogle Scholar
  7. 7.
    Michalet X, Weiss S, Jager M (2006) Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev 106:1785–1813CrossRefGoogle Scholar
  8. 8.
    Moerner WE (2007) New directions in single-molecule imaging and analysis. Proc Natl Acad Sci USA 104:12596–12602CrossRefGoogle Scholar
  9. 9.
    Pi J, Jin H, Yang F et al (2014) In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine. Nanoscale 6:12229–12249CrossRefGoogle Scholar
  10. 10.
    Chen C (2015) Clathrin meets caveolae: fuse or not? Sci Bull 60:1787–1788CrossRefGoogle Scholar
  11. 11.
    Xie XS, Trautman JK (1998) Optical studies of single molecules at room temperature. Annu Rev Phys Chem 49:441–480CrossRefGoogle Scholar
  12. 12.
    Xie XS, Yu J, Yang WY (2006) Perspective—living cells as test tubes. Science 312:228–230CrossRefGoogle Scholar
  13. 13.
    Cheng M, Zhang W, Yuan JH et al (2014) Single-molecule dynamics of site-specific labeled transforming growth factor type II receptors on living cells. Chem Commun 50:14724–14727CrossRefGoogle Scholar
  14. 14.
    Yang Y, Xu YC, Xia T et al (2011) A single-molecule study of the inhibition effect of Naringenin on transforming growth factor-beta ligand-receptor binding. Chem Commun 47:5440–5442CrossRefGoogle Scholar
  15. 15.
    Zhang W, Jiang YX, Wang Q et al (2009) Single-molecule imaging reveals transforming growth factor-beta-induced type II receptor dimerization. Proc Natl Acad Sci USA 106:15679–15683CrossRefGoogle Scholar
  16. 16.
    Zhang W, Yuan JH, Yang Y et al (2010) Monomeric type I and type III transforming growth factor-beta receptors and their dimerization revealed by single-molecule imaging. Cell Res 20:1216–1223CrossRefGoogle Scholar
  17. 17.
    Friess H, Yamanaka Y, Buchler M et al (1993) Enhanced expression of the type-II transforming growth-fator-beta receptor in human pancreatic-cancer cells without alteration of type-III receptor expression. Cancer Res 53:2704–2707Google Scholar
  18. 18.
    Wagner M, Kleeff J, Friess H et al (1999) Enhanced expression of the type II transforming growth factor-beta receptor is associated with decreased survival in human pancreatic cancer. Pancreas 19:370–376CrossRefGoogle Scholar
  19. 19.
    Taketazu F, Kato M, Gobl A et al (1994) Enhanced expression of transforming growth factor-beta-s and transforming growth-factor-beta type-II receptor in the synovial tissues of patients with rheumatoid-arthritis. Lab Invest 70:620–630Google Scholar
  20. 20.
    Manley S, Gillette JM, Patterson GH et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157CrossRefGoogle Scholar
  21. 21.
    English BP, Hauryliuk V, Sanamrad A et al (2011) Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc Natl Acad Sci USA 108:E365–E373CrossRefGoogle Scholar
  22. 22.
    Kim DH, Zhou K, Kim DK et al (2015) Analysis of interactions between the epidermal growth factor receptor and soluble ligands on the basis of single-molecule diffusivity in the membrane of living cells. Angew Chem Int Ed 54:7028–7032CrossRefGoogle Scholar
  23. 23.
    Liu Z, Xing D, Su QP et al (2014) Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space. Nat Commun 5:8CrossRefGoogle Scholar
  24. 24.
    Hou SG, Liang L, Deng SH et al (2014) Nanoprobes for super-resolution fluorescence imaging at the nanoscale. Sci China Chem 57:100–106CrossRefGoogle Scholar
  25. 25.
    Luo WX, Xia T, Xu L et al (2014) Visualization of the post-Golgi vesicle-mediated transportation of TGF-beta receptor II by quasi-TIRFM. J Biophotonics 7:788–798CrossRefGoogle Scholar
  26. 26.
    Ji W, Xu PY, Li ZZ et al (2008) Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci USA 105:13668–13673CrossRefGoogle Scholar
  27. 27.
    Yuan JH, He KM, Cheng M et al (2014) Analysis of the steps in single-molecule photobleaching traces by using the hidden markov model and maximum-likelihood clustering. Chem Asian J 9:2303–2308CrossRefGoogle Scholar
  28. 28.
    Jaqaman K, Kuwata H, Touret N et al (2011) Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function. Cell 146:593–606CrossRefGoogle Scholar
  29. 29.
    Jaqaman K, Loerke D, Mettlen M et al (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702CrossRefGoogle Scholar
  30. 30.
    Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane-receptors as studied by single-particle tracking (nanovid microscopy)—effects of calcium-induced differentiation in cultured epithelial-cells. Biophys J 65:2021–2040CrossRefGoogle Scholar
  31. 31.
    Zhang MS, Chang H, Zhang YD et al (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9:727–729CrossRefGoogle Scholar
  32. 32.
    Adam V (2014) Phototransformable fluorescent proteins: which one for which application? Histochem Cell Biol 142:19–41CrossRefGoogle Scholar
  33. 33.
    Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645CrossRefGoogle Scholar
  34. 34.
    Xia T, Li N, Fang XH (2013) Single-molecule fluorescence imaging in living cells. In: Johnson MA, Martinez TJ (eds) Annual review of physical chemistry, vol 64. Annual Reviews, Palo Alto, pp 459–480Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zi Ye
    • 1
  • Nan Li
    • 1
  • Libo Zhao
    • 1
  • Yahong Sun
    • 1
  • Hefei Ruan
    • 1
  • Mingliang Zhang
    • 1
  • Jinghe Yuan
    • 1
  • Xiaohong Fang
    • 1
    Email author
  1. 1.Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations