Advertisement

Science Bulletin

, Volume 61, Issue 5, pp 368–377 | Cite as

An integrated nanocarbon–cellulose membrane for solid-state supercapacitors

  • Huabo Liu
  • Yuheng Tian
  • Rose Amal
  • Da-Wei Wang
Article Materials Science

Abstract

In this work, we demonstrate the assembly of oxidised carbon nanohybrids (oCNHs) with a commercial cellulose membrane for solid-state supercapacitors. The oCNHs–cellulose membranes were prepared by filtering a water dispersion of oCNHs through the cellulose membrane. The oCNHs were derived from carbon nanotubes via a modified Hummer’s method and contained both closed tubes and unzipped tubes, which indicated a hybrid geometrical structure. The solid-state supercapacitor based on the oCNHs–cellulose membranes showed a high areal capacitance of ~75 mF/cm2 at a low scan rate (5 mV/s) and excellent stability for 1,000 cycles.

Keywords

Solid-state supercapacitors Carbon nanotubes Membrane 

Notes

Acknowledgments

This work was supported by Faculty of Engineering, The University of New South Wales and the Australian Research Council Discovery Project (DP160103244). The authors acknowledge the facilities and the scientific and technical assistance from Mark Wainwright Analytical Centre, The University of New South Wales.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Administration EI (2013) International Energy Outlook 2013 with projections to 2040. Government Printing Office, WashingtonGoogle Scholar
  2. 2.
    Goodenough JB (2015) Energy storage materials: a perspective. Energy Storage Mater 1:158–161CrossRefGoogle Scholar
  3. 3.
    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652CrossRefGoogle Scholar
  4. 4.
    Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50CrossRefGoogle Scholar
  5. 5.
    Pandolfo A, Hollenkamp A (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27CrossRefGoogle Scholar
  6. 6.
    Nathan A, Ahnood A, Cole MT et al (2012) Flexible electronics: the next ubiquitous platform. Proc IEEE 100:1486–1517CrossRefGoogle Scholar
  7. 7.
    LeMieux MC, Bao Z (2008) Flexible electronics: stretching our imagination. Nat Nanotechnol 3:585–586CrossRefGoogle Scholar
  8. 8.
    Lu X, Xia Y (2006) Electronic materials: buckling down for flexible electronics. Nat Nanotechnol 1:163–164CrossRefGoogle Scholar
  9. 9.
    Park S, Wang G, Cho B et al (2012) Flexible molecular-scale electronic devices. Nat Nanotechnol 7:438–442CrossRefGoogle Scholar
  10. 10.
    Kaempgen M, Chan CK, Ma J et al (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876CrossRefGoogle Scholar
  11. 11.
    Kang YJ, Chun SJ, Lee SS et al (2012) All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6:6400–6406CrossRefGoogle Scholar
  12. 12.
    Niu Z, Dong H, Zhu B et al (2013) Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv Mater 25:1058–1064CrossRefGoogle Scholar
  13. 13.
    Yang Z, Deng J, Chen X et al (2013) A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed 52:13453–13457CrossRefGoogle Scholar
  14. 14.
    Chen T, Peng H, Durstock M et al (2014) High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Sci Rep 4:3612Google Scholar
  15. 15.
    El-Kady MF, Strong V, Dubin S et al (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330CrossRefGoogle Scholar
  16. 16.
    Xu Y, Lin Z, Huang X et al (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7:4042–4049CrossRefGoogle Scholar
  17. 17.
    Zhao Y, Liu J, Hu Y et al (2013) Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater 25:591–595CrossRefGoogle Scholar
  18. 18.
    Yoo JJ, Balakrishnan K, Huang J et al (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427CrossRefGoogle Scholar
  19. 19.
    Wu ZS, Parvez K, Feng X et al (2013) Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat Commun 4:2487Google Scholar
  20. 20.
    El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:1475CrossRefGoogle Scholar
  21. 21.
    Chen T, Xue Y, Roy AK et al (2013) Transparent and stretchable high-Performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8:1039–1046CrossRefGoogle Scholar
  22. 22.
    Weng Z, Su Y, Wang DW et al (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922CrossRefGoogle Scholar
  23. 23.
    Ren W, Cheng HM (2014) The global growth of graphene. Nat Nanotechnol 9:726–730CrossRefGoogle Scholar
  24. 24.
    Chen YC, Hsu YK, Lin YG et al (2011) Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode. Electrochim Acta 56:7124–7130CrossRefGoogle Scholar
  25. 25.
    Xu D, Xu Q, Wang K et al (2013) Fabrication of free-Standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors. ACS Appl Mater Interfaces 6:200–209CrossRefGoogle Scholar
  26. 26.
    Meng C, Liu C, Chen L et al (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10:4025–4031CrossRefGoogle Scholar
  27. 27.
    Zhang N, Luan P, Zhou W et al (2014) Highly stretchable pseudocapacitors based on buckled reticulate hybrid electrodes. Nano Res 7:1–11CrossRefGoogle Scholar
  28. 28.
    Wang K, Zhang X, Li C et al (2014) Flexible solid-state supercapacitors based on conducting polymer hydrogel with enhanced electrochemical performance. J Mater Chem A 46:19726–19732CrossRefGoogle Scholar
  29. 29.
    Wang ZL, He XJ, Ye SH et al (2013) Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage. ACS Appl Mater Interfaces 6:642–647CrossRefGoogle Scholar
  30. 30.
    Wang DW, Li F, Zhao J et al (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752CrossRefGoogle Scholar
  31. 31.
    Dubal DP, Gund GS, Holze R et al (2013) Solution-based binder-free synthetic approach of RuO2 thin films for all solid state supercapacitors. Electrochim Acta 103:103–109CrossRefGoogle Scholar
  32. 32.
    Yang P, Li Y, Lin Z et al (2014) Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors. J Mater Chem A 2:595–599CrossRefGoogle Scholar
  33. 33.
    Lee M, Wee BH (2015) Hong JD (2015) High performance flexible supercapacitor electrodes composed of ultralarge graphene sheets and vanadium dioxide. Adv Energy Mater 5:1401890Google Scholar
  34. 34.
    Dai L, Chang DW, Baek JB et al (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130–1166CrossRefGoogle Scholar
  35. 35.
    Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903CrossRefGoogle Scholar
  36. 36.
    Wu ZS, Yang S, Zhang L et al (2015) Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances. Energy Storage Mater 1:119–126CrossRefGoogle Scholar
  37. 37.
    Wu ZS, Feng X, Cheng HM (2013) Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Nat Sci Rev 1:277–292CrossRefGoogle Scholar
  38. 38.
    Candelaria SL, Cao G (2015) Increased working voltage of hexamine-coated porous carbon for supercapacitors. Sci Bull 60:1587–1597CrossRefGoogle Scholar
  39. 39.
    Xiao X, Zhang C, Lin S et al (2015) Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors. Energy Storage Mater 1:1–8CrossRefGoogle Scholar
  40. 40.
    Jeon IY, Shin YR, Sohn GJ et al (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Nat Acad Sci USA 109:5588–5593CrossRefGoogle Scholar
  41. 41.
    Jeon IY, Choi HJ, Jung SM et al (2012) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135:1386–1393CrossRefGoogle Scholar
  42. 42.
    Jeon IY, Choi HJ, Ju MJ et al (2013) Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Sci Rep 3:2260Google Scholar
  43. 43.
    Jeon IY, Zhang S, Zhang L et al (2013) Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect. Adv Mater 25:6138–6145CrossRefGoogle Scholar
  44. 44.
    Kosynkin DV, Higginbotham AL, Sinitskii A et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876CrossRefGoogle Scholar
  45. 45.
    Li H, Yang C, Liu F (2009) Novel method for determining stacking disorder degree in hexagonal graphite by X-ray diffraction. Sci Chin Ser B Chem 52:174–180CrossRefGoogle Scholar
  46. 46.
    Acik M, Mattevi C, Gong C et al (2010) The role of intercalated water in multilayered graphene oxide. ACS Nano 4:5861–5868CrossRefGoogle Scholar
  47. 47.
    Wang DW, Wu KH, Gentle IR et al (2012) Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature. Carbon 50:3333–3341CrossRefGoogle Scholar
  48. 48.
    Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc 38:728–736CrossRefGoogle Scholar
  49. 49.
    Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2:58–63Google Scholar
  50. 50.
    Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRefGoogle Scholar
  51. 51.
    Wu KH, Wang DW, Gentle IR (2015) Revisiting oxygen reduction reaction on oxidized and unzipped carbon nanotubes. Carbon 81:295–304CrossRefGoogle Scholar
  52. 52.
    Lucchese MM, Stavale F, Ferreira EHM et al (2010) Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48:1592–1597CrossRefGoogle Scholar
  53. 53.
    Wang DW, Du A, Taran E et al (2012) A water-dielectric capacitor using hydrated graphene oxide film. J Mater Chem 22:21085–21091CrossRefGoogle Scholar
  54. 54.
    Xu Y, Bai H, Lu G et al (2008) Flexible graphene films via the filtration of water–soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857CrossRefGoogle Scholar
  55. 55.
    Wu N, She X, Yang D et al (2012) Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite. J Mater Chem 22:17254–17261CrossRefGoogle Scholar
  56. 56.
    Yang T, Liu L, Liu J et al (2012) Cyanobacterium metallothionein decorated graphene oxide nanosheets for highly selective adsorption of ultra-trace cadmium. J Mater Chem 22:21909–21916CrossRefGoogle Scholar
  57. 57.
    Wang DW, Sun C, Zhou G et al (2013) The examination of graphene oxide for rechargeable lithium storage as a novel cathode material. J Mater Chem A 1:3607–3612CrossRefGoogle Scholar
  58. 58.
    Akhavan O (2010) The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48:509–519CrossRefGoogle Scholar
  59. 59.
    Yang D, Velamakanni A, Bozoklu G et al (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47:45–152Google Scholar
  60. 60.
    Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16:272–280CrossRefGoogle Scholar
  61. 61.
    Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRefGoogle Scholar
  62. 62.
    Yang X, Qiu L, Cheng C et al (2011) Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew Chem Int Ed 50:7325–7328CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Huabo Liu
    • 1
  • Yuheng Tian
    • 1
  • Rose Amal
    • 1
  • Da-Wei Wang
    • 1
  1. 1.School of Chemical EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations