Science Bulletin

, Volume 61, Issue 5, pp 383–390 | Cite as

The bright star survey telescope for the planetary transit survey in Antarctica

  • Qiguo Tian
  • Peng Jiang
  • Fujia Du
  • Jian Wang
  • Zhengyang Li
  • Xiaoyan Li
  • Zhiyong Zhang
  • Haiping Lu
  • Xiangyan Yuan
  • Huigen Liu
  • Hui Zhang
  • Luming Sun
  • Liang Chang
  • Jianguo Wang
  • Shaohua Zhang
  • Tuo Ji
  • Xiheng Shi
  • Jie Chen
  • Guangyu Zhang
  • Minghao Jia
  • Jiajing Liu
  • Junyan Zhou
  • Xiang Pan
  • Shucheng Dong
  • Fengxin Jiang
  • Hongfei Zhang
  • Jilin Zhou
  • Lifan Wang
  • Hongyan Zhou
Article Physics & Astronomy

Abstract

Transiting extrasolar planets (exoplanets), especially those orbiting bright stars, are desired for study of the diversity of planetary compositions, internal structures and atmospheres beyond our solar system. Dome A at Antarctica is a promising site for planetary transit surveys, where the continuous darkness and the large clear-sky fraction in the winter months greatly enhance the detection efficiency. The Chinese Small Telescope ARray and the Antarctic Survey Telescopes are the first facilities that have been operated at Dome A for use in exoplanet surveys. To increase the sky coverage, a low-temperature-resistant wide-field robotic telescope, named the bright star survey telescope (BSST), has been developed to join the ongoing planetary transit survey in Antarctica. The BSST has an aperture size of 300 mm and is equipped with a large-frame \(4K\times 4K\) CCD camera to receive starlight from a \(3.^{\circ }4 \times 3.^{\circ }4\) field of view. The BSST was operated at Lijiang observatory in April and May 2015 for a test run. Photometric precision of 3.5 mmag was achieved for stars with \(V\sim 11\) mag using 75 s exposures. The transiting events of two Jupiter-size exoplanets, HAT-P-3b and HAT-P-12b, were observed on May 10 and May 20, 2015, respectively.

Keywords

Instrumentation Exoplanet Photometry Antarctic Site 

用于南极太阳系外行星搜寻的亮星巡天望远镜

摘要

具有凌星现象的太阳系外行星对研究行星的成分,结构和大气性质具有重要意义,南极冰穹A的极夜连续观测窗口和极佳的观测条件特别适合开展系外行星的测光搜寻。为了提高现有巡天(CSTAR和AST)的天区覆盖,我们研制了一台耐低温、大视场的测光望远镜,即亮星巡天望远镜(BSST),其口径300 mm,配备4K×4K CCD相机,视场3.°4×3.°4。BSST对V~11等星进行75秒曝光的实测测光精度为3.5 mmag。在丽江试观测期间,成功观测了两个已知系外行星HAT-P-3b和HAT-P-12b的凌星事件。

Notes

Acknowledgments

The authors appreciate the enlightening suggestions from the referees, which helped to improve the quality of this paper. This work is supported by the Astronomical Project for the Chinese Antarctic Inland Station, the SOC Program (CHINARE2012-02-03, CHINARE2013-02-03, CHINARE2014-02-03, and CHINARE2015-02-03), and the National Basic Research Program of China (2013CB834905 and 2015CB857005). Q. Tian is supported by the National Natural Science Foundation of China (11503023), the Natural Science Foundation of Shanghai (14ZR1444100), and the Polar Science Innovation Fund for Young Scientists of Polar Research Institute of China (CX20130201). P. Jiang is supported by the National Natural Science Foundation of China (11233002 and 11203022). H. Zhou is supported by the National Natural Science Foundation of China (11473025, 11421303 and 11033007). S. Zhang is supported by the National Natural Science Foundation of China (11573024). T. Ji is supported by the National Natural Science Foundation of China (11503022) and the Natural Science Foundation of Shanghai (15ZR1444200).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359CrossRefGoogle Scholar
  2. 2.
    Marcy GW, Butler RP (1996) A planetary companion to 70 virginis. Astrophys J 464:L147–L151CrossRefGoogle Scholar
  3. 3.
    Charbonneau D, Brown TM, Latham DW et al (2000) Detection of planetary transits across a sun-like star. Astrophys J 529:L45–L48CrossRefGoogle Scholar
  4. 4.
    Bakos G, Noyes RW, Kovács G et al (2004) Wide-field millimagnitude photometry with the HAT: a tool for extrasolar planet detection. Publ Astron Soc Pac 116:266–277CrossRefGoogle Scholar
  5. 5.
    Pollacco DL, Skillen I, Collier CA et al (2006) The WASP project and the SuperWASP cameras. Publ Astron Soc Pac 118:1407–1418CrossRefGoogle Scholar
  6. 6.
    Pepper J, Pogge RW, DePoy DL et al (2007) The kilodegree extremely little telescope (KELT): a small robotic telescope for large-area synoptic surveys. Publ Astron Soc Pac 119:923–935CrossRefGoogle Scholar
  7. 7.
    Fortney JJ, Marley MS, Barnes JW (2007) Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys J 659:1661–1672CrossRefGoogle Scholar
  8. 8.
    Burrows AS (2014) Highlights in the study of exoplanet atmospheres. Nature 513:345–352CrossRefGoogle Scholar
  9. 9.
    Ricker GR, Winn JN, Vanderspek R et al (2014) Transiting exoplanet survey satellite (TESS). Proc SPIE 9143:914320CrossRefGoogle Scholar
  10. 10.
    Broeg C, Fortier A, Ehrenreich D et al (2013) CHEOPS: a transit photometry mission for ESA’s small mission programme. Europ Phys J Web Conf 47:03005CrossRefGoogle Scholar
  11. 11.
    Wheatley PJ, Pollacco DL, Queloz D et al (2013) The next generation transit survey (NGTS). Europ Phys J Web Conf 47:13002CrossRefGoogle Scholar
  12. 12.
    Brown TM (2003) Expected detection and false alarm rates for transiting jovian planets. Astrophys J 593:L125–L128CrossRefGoogle Scholar
  13. 13.
    Yang H, Allen G, Ashley MCB et al (2009) The PLATO Dome A site-testing observatory: instrumentation and first results. Publ Astron Soc Pac 121:174–184CrossRefGoogle Scholar
  14. 14.
    Tang X, Sun B, Guo J et al (2015) A freeze-on ice zone along the Zhongshan–Kunlun ice sheet profile, East Antarctica, by a new ground-based ice-penetrating radar. Sci Bull 60:574–576CrossRefGoogle Scholar
  15. 15.
    Zou H, Zhou X, Jiang Z et al (2010) Sky brightness and transparency in the i band at Dome A, Antarctica. Astron J 140:602–611CrossRefGoogle Scholar
  16. 16.
    Law NM, Carlberg R, Salbi P et al (2013) Exoplanets from the arctic: the first wide-field survey at 80°N. Astron J 145:58–68CrossRefGoogle Scholar
  17. 17.
    Kenyon SL, Lawrence JS, Ashley MCB et al (2006) Atmospheric scintillation at Dome C, Antarctica: implications for photometry and astrometry. Publ Astron Soc Pac 118:924–932CrossRefGoogle Scholar
  18. 18.
    Hagelin S, Masciadri E, Lascaux F et al (2008) Comparison of the atmosphere above the South Pole, Dome C and Dome A: first attempt. Mon Not R Astron Soc 387:1499–1510CrossRefGoogle Scholar
  19. 19.
    Yuan X, Cui X, Liu G et al (2008) Chinese small telescope ARray (CSTAR) for antarctic Dome A. Proc SPIE 7012:70124GCrossRefGoogle Scholar
  20. 20.
    Wang SH, Zhou X, Zhang H et al (2014) The correction of diurnal effects on CSTAR photometry. Res Astron Astrophys 14:345–356CrossRefGoogle Scholar
  21. 21.
    Wang S, Zhang H, Zhou JL et al (2014) Planetary transit candidates in the CSTAR field: analysis of the 2008 Data. Astrophys J Suppl Ser 211:26–40CrossRefGoogle Scholar
  22. 22.
    Ivezić Ž, Smith JA, Miknaitis G et al (2007) Sloan digital sky survey standard star catalog for stripe 82: the dawn of industrial 1 % optical photometry. Astron J 134:973–998CrossRefGoogle Scholar
  23. 23.
    Li ZY, Lu HP, Yuan XY (2015) Optical design for Antarctic bright star survey telescope. Chin Opt Lett 13:111101CrossRefGoogle Scholar
  24. 24.
    Zhang GY, Wang J, Tang PY et al (2016) An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes. Mon Not R Astron Soc 455:1654–1664CrossRefGoogle Scholar
  25. 25.
    Dravins D, Lindegren L, Mezey E et al (1998) Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures. Publ Astron Soc Pac 110:610–633CrossRefGoogle Scholar
  26. 26.
    Manfroid J (1995) Stellar calibration of CCD flat fielding. Astron Astrophys 113:587Google Scholar
  27. 27.
    Manfroid J, Royer P, Rauw G et al (2001) Correction of systematic errors in differential photometry. Astron Data Anal Softw Syst X 238:373Google Scholar
  28. 28.
    Bonner CS, Ashley MCB, Cui X et al (2010) Thickness of the atmospheric boundary layer above Dome A, Antarctica, during 2009. Publ Astron Soc Pac 122:1122–1131CrossRefGoogle Scholar
  29. 29.
    Zhang SH, Zhou HY, Shi XH et al (2015) Discovery of extremely broad Balmer absorption lines in SDSS J152350.42+391405.2. Astrophys J 815:113–123CrossRefGoogle Scholar
  30. 30.
    Mao YN, Lu XM, Wang JF (2014) Simultaneous multicolor photometry of fast-moving objects using the 1-meter telescope at Xinglong Observatory. Sci China Phys Mech Astron 57:562–568CrossRefGoogle Scholar
  31. 31.
    Rong J, Buser R (2000) The Galactic population components and their structural parameter values. Chin Sci Bull 45:1362–1364CrossRefGoogle Scholar
  32. 32.
    Jester S, Schneider DP, Richards GT et al (2005) The Sloan digital sky survey view of the palomar-green bright quasar survey. Astron J 130:873–895CrossRefGoogle Scholar
  33. 33.
    Torres G, Bakos GÁ, Kovács G et al (2007) HAT-P-3b: a heavy-element-rich planet transiting a K dwarf star. Astrophys J 666:L121–L214CrossRefGoogle Scholar
  34. 34.
    Hartman JD, Bakos GÁ, Torres G et al (2009) HAT-P-12b: a low-density sub-saturn mass planet transiting a metal-poor K dwarf. Astrophys J 706:785–796CrossRefGoogle Scholar
  35. 35.
    Nascimbeni V, Piotto G, Bedin LR et al (2011) TASTE: the Asiago search for transit timing variations of exoplanets. I. Overview and improved parameters for HAT-P-3b and HAT-P-14b. Astron Astrophys 527:A85–A94CrossRefGoogle Scholar
  36. 36.
    Nascimbeni V, Piotto G, Pagano I et al (2013) The blue sky of GJ3470b: the atmosphere of a low-mass planet unveiled by ground-based photometry. Astron Astrophys 559:A32CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Qiguo Tian
    • 1
  • Peng Jiang
    • 1
    • 2
  • Fujia Du
    • 3
  • Jian Wang
    • 4
  • Zhengyang Li
    • 3
  • Xiaoyan Li
    • 3
  • Zhiyong Zhang
    • 3
  • Haiping Lu
    • 3
  • Xiangyan Yuan
    • 3
  • Huigen Liu
    • 2
    • 5
  • Hui Zhang
    • 2
    • 5
  • Luming Sun
    • 1
    • 6
  • Liang Chang
    • 7
    • 8
  • Jianguo Wang
    • 7
    • 8
  • Shaohua Zhang
    • 1
  • Tuo Ji
    • 1
  • Xiheng Shi
    • 1
  • Jie Chen
    • 4
  • Guangyu Zhang
    • 4
  • Minghao Jia
    • 4
  • Jiajing Liu
    • 4
  • Junyan Zhou
    • 1
    • 6
  • Xiang Pan
    • 1
    • 6
  • Shucheng Dong
    • 4
  • Fengxin Jiang
    • 4
  • Hongfei Zhang
    • 4
  • Jilin Zhou
    • 2
    • 5
  • Lifan Wang
    • 9
  • Hongyan Zhou
    • 1
    • 6
  1. 1.Polar Research Institute of ChinaShanghaiChina
  2. 2.School of Astronomy and Space ScienceNanjing UniversityNanjingChina
  3. 3.National Astronomical Observatories/Nanjing Institute of Astronomical Optics and TechnologyChinese Academy of SciencesNanjingChina
  4. 4.State Key Laboratory of Technologies of Particle Detection and Electronics, Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina
  5. 5.Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University)Ministry of EducationNanjingChina
  6. 6.Key Laboratory for Research in Galaxies and Cosmology, Department of AstronomyUniversity of Science and Technology of China, Chinese Academy of SciencesHefeiChina
  7. 7.National Astronomical Observatories/Yunnan ObservatoryChinese Academy of SciencesKunmingChina
  8. 8.Key Laboratory for the Structure and Evolution of Celestial ObjectsChinese Academy of SciencesKunmingChina
  9. 9.Purple Mountain ObservatoryChinese Academy of ScienceNanjingChina

Personalised recommendations