Science Bulletin

, Volume 60, Issue 16, pp 1391–1394 | Cite as

Oxidative cross-coupling: an alternative way for C–C bond formations

Progress Chemistry


Coupling reaction usually refers to the direct C–C bond formation between two carbon fragments. Generally, cross-coupling reactions between nucleophiles and electrophiles have been extensively studied and become the classic model for bond constructions. Another reaction model, bond formation from two nucleophiles through oxidative cross-coupling, has received more and more attention over the past few years. This paper will discuss the concept of oxidative cross-coupling and give an overview of its recent development.


Oxidative cross-coupling C–C bond formation Oxidant Nucleophile 





氧化交叉偶联 碳碳成键 氧化剂 亲核试剂 



This work was supported by the National Basic Research Program of China (2012CB725302), the National Natural Science Foundation of China (21390400, 21272180, 21302148), the Research Fund for the Doctoral Program of Higher Education of China (20120141130002) and the Ministry of Science and Technology of China (2012YQ120060). The Program of Introducing Talents of Discipline to Universities of China (111 Program) is also appreciated.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Diederich F, Stang PJ (1998) Metal-catalyzed cross-coupling reactions. Wiley-VCH, New YorkGoogle Scholar
  2. 2.
    Meijere A, Diederich F (2004) Metal-catalyzed cross-coupling reactions, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. 3.
    Keller GE, Bhasin MM (1982) Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J Catal 73:9–19CrossRefGoogle Scholar
  4. 4.
    Lunsford JH (1995) The catalytic oxidative coupling of methane. Angew Chem Int Ed 34:970–980CrossRefGoogle Scholar
  5. 5.
    Amenomiya Y, Birss VI, Goledzinowski M et al (1990) Conversion of methane by oxidative coupling. Catal Rev Sci Eng 32:163–227CrossRefGoogle Scholar
  6. 6.
    Lee JS, Oyama ST (1988) Oxidative coupling of methane to higher hydrocarbons. Catal Rev Sci Eng 30:249–280CrossRefGoogle Scholar
  7. 7.
    Grzybowski M, Skonieczny K, Butenschön H et al (2013) Comparison of oxidative aromatic coupling and the scholl reaction. Angew Chem Int Ed 52:9900–9930CrossRefGoogle Scholar
  8. 8.
    Löwe J (1868) Z Chemie 4:603–604Google Scholar
  9. 9.
    Dianin AP. Zh Russ Fiz Khim. O-va 1874, 183Google Scholar
  10. 10.
    Belletire JL, Spletzer EG, Pinhas AR (1984) Oxidative coupling of carboxylic acid dianions. Tetrahedron Lett 25:5969–5972CrossRefGoogle Scholar
  11. 11.
    Belletire JL, Spletzer EG (1986) Oxidative coupling. III. The duco reaction. Tetrahedron Lett 27:131–134CrossRefGoogle Scholar
  12. 12.
    Belletire JL, Fremont SL (1986) Oxidative coupling. II. The total synthesis of enterolactone. Tetrahedron Lett 27:127–130CrossRefGoogle Scholar
  13. 13.
    Corey EJ, Cheng XM (1989) The logic of chemical synthesis. Wiley, New YorkGoogle Scholar
  14. 14.
    Ei N (2011) Magical power of transition metals: past, present, and future (Nobel lecture). Angew Chem Int Ed 50:6738–6764CrossRefGoogle Scholar
  15. 15.
    Suzuki A (2011) Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds (Nobel lecture). Angew Chem Int Ed 50:6722–6737CrossRefGoogle Scholar
  16. 16.
    Shang R, Liu L (2011) Transition metal-catalyzed decarboxylative cross-coupling reactions. Sci China Chem 54:1670–1687CrossRefGoogle Scholar
  17. 17.
    Rodriguez N, Goossen LJ (2011) Decarboxylative coupling reactions: a modern strategy for C–C bond formation. Chem Soc Rev 40:5030–5048CrossRefGoogle Scholar
  18. 18.
    Liu C, Liu D, Lei A (2014) Recent advances of transition-metal catalyzed radical oxidative cross-couplings. Acc Chem Res 47:3459–3470CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Wang H, Hou X et al (2006) Oxidative cross-coupling through double transmetallation: surprisingly high selectivity for palladium-catalyzed cross-coupling of alkylzinc and alkynylstannanes. J Am Chem Soc 128:15048–15049CrossRefGoogle Scholar
  20. 20.
    Liu C, Jin L, Lei A (2010) Transition-metal-catalyzed oxidative cross-coupling reactions. Synlett 2010(17):2527–2536CrossRefGoogle Scholar
  21. 21.
    Chen M, Zheng X, Li W et al (2010) Palladium-catalyzed aerobic oxidative cross-coupling reactions of terminal alkynes with alkylzinc reagents. J Am Chem Soc 132:4101–4103CrossRefGoogle Scholar
  22. 22.
    Li CJ (2009) Cross-dehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc Chem Res 42:335–344CrossRefGoogle Scholar
  23. 23.
    He C, Guo S, Ke J et al (2012) Silver-mediated oxidative C–H/C–H functionalization: a strategy to construct polysubstituted furans. J Am Chem Soc 134:5766–5769CrossRefGoogle Scholar
  24. 24.
    Shi W, Liu C, Lei A (2011) Transition-metal catalyzed oxidative cross-coupling reactions to form C–C bonds involving organometallic reagents as nucleophiles. Chem Soc Rev 40:2761–2776CrossRefGoogle Scholar
  25. 25.
    Liu C, Zhang H, Shi W et al (2011) Bond formations between two nucleophiles: transition metal catalyzed oxidative cross-coupling reactions. Chem Rev 111:1780–1824CrossRefGoogle Scholar
  26. 26.
    Girard SA, Knauber T, Li CJ (2014) The cross-dehydrogenative coupling of C(sp3)–H bonds: a versatile strategy for C–C bond formations. Angew Chem Int Ed 53:74–100CrossRefGoogle Scholar
  27. 27.
    Yeung CS, Dong VM (2011) Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem Rev 111:1215–1292CrossRefGoogle Scholar
  28. 28.
    Peng H, Xi Y, Ronaghi N et al (2014) Gold-catalyzed oxidative cross-coupling of terminal alkynes: selective synthesis of unsymmetrical 1,3-diynes. J Am Chem Soc 136:13174–13177CrossRefGoogle Scholar
  29. 29.
    Lyons TW, Hull KL, Sanford MS (2011) Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions. J Am Chem Soc 133:4455–4464CrossRefGoogle Scholar
  30. 30.
    Li K, Tan G, Huang J et al (2013) Iron-catalyzed oxidative C–H/C–H cross-coupling: an efficient route to α-quaternary α-amino acid derivatives. Angew Chem Int Ed 52:12942–12945CrossRefGoogle Scholar
  31. 31.
    Kita Y, Morimoto K, Ito M et al (2009) Metal-free oxidative cross-coupling of unfunctionalized aromatic compounds. J Am Chem Soc 131:1668–1669CrossRefGoogle Scholar
  32. 32.
    Jie X, Shang Y, Hu P et al (2013) Palladium-catalyzed oxidative cross-coupling between heterocycles and terminal alkynes with low catalyst loading. Angew Chem Int Ed 52:3630–3633CrossRefGoogle Scholar
  33. 33.
    Hu XH, Zhang J, Yang XF et al (2015) Stereo- and chemoselective cross-coupling between two electron-deficient acrylates: an efficient route to (Z, E)-muconate derivatives. J Am Chem Soc 137:3169–3172CrossRefGoogle Scholar
  34. 34.
    He CY, Fan S, Zhang X (2010) Pd-catalyzed oxidative cross-coupling of perfluoroarenes with aromatic heterocycles. J Am Chem Soc 132:12850–12852CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS)Wuhan UniversityWuhanChina

Personalised recommendations