Advertisement

Science Bulletin

, Volume 60, Issue 1, pp 116–121 | Cite as

Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites

  • Chun-Ming Wu
  • Hong-Xu Chen
Article Earth Science

Abstract

In the present study, the Ti-in-biotite geothermometer was revised using more than 300 natural rutile- or ilmenite-bearing metapelites collected worldwide. The formulation was empirically calibrated as \( \ln [T\,(^\circ {\text{C}})] = 6.313 + 0.224\ln (X_{\text{Ti}} ) - 0.288\ln (X_{\text{Fe}} ) - 0.449\ln (X_{\text{Mg}} ) + 0.15P\,({\text{GPa}}) \), with \( X_{j} = {{j}}/({\text{Fe}} + {\text{Mg}} + {\text{Al}}^{\text{VI}} + {\text{Ti}}) \) in biotite, assuming ferric iron content of 11.6 mol% of the total iron in biotite. This thermometer is consistent with the well-calibrated garnet–biotite thermometer within error of ±50 °C for most of the calibrant samples and can successfully distinguish systematic temperature changes of different metamorphic zones in both prograde and inverted metamorphic terranes as well as thermal contact aureoles. Thus, the thermometer truthfully reflects real geologic conditions and can be applied to TiO2-saturated metapelites metamorphosed at the crustal level within the calibration ranges (450–840 °C, 0.1–1.9 GPa, X Ti = 0.02–0.14 in biotite).

Keywords

Ti content Biotite Calibration Geothermometer Application Error 

摘要

本文根据取自世界各地的含有钛铁矿或金红石的变质泥质岩石的温度、压力和矿物成分数据,将黑云母Ti温度计修正为: \( \ln [T(^\circ {\text{C}})] = 6.313 + 0.224\ln (X_{\text{Ti}} ) - 0.288\ln (X_{\text{Fe}} ) - 0.449\ln (X_{\text{Mg}} ) + 0.15P({\text{GPa}}) \), 其中黑云母中八次配位的各种阳离子摩尔浓度定义为 \( X_{j} = {\text{j}}/({\text{Fe}} + {\text{Mg}} + {\text{Al}}^{\text{VI}} + {\text{Ti}}) \)。设定此类岩石中的黑云母含有11.6 mol%的三价铁。该温度计在±50 °C误差范围内与石榴子石-黑云母温度计基本一致,能准确识别递增变质带、倒转变质带、热接触变质晕圈内不同变质地带岩石变质温度的规律性变化,能反映客观地质事实。该温度计偶然误差一般不超过±65 °C,适用于钛饱和的变质泥质岩石。适用条件为:450~840 °C, 0.1~1.9 GPa, 黑云母中X Ti = 0.02~0.14。

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41225007).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11434_2014_674_MOESM1_ESM.xls (108 kb)
Supplementary material 1 (XLS 108 kb)
11434_2014_674_MOESM2_ESM.xls (46 kb)
Supplementary material 2 (XLS 45 kb)

References

  1. 1.
    Holdaway MJ (2000) Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Am Mineral 85:881–892Google Scholar
  2. 2.
    Holdaway MJ (2001) Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. Am Mineral 86:1117–1129Google Scholar
  3. 3.
    Wu CM, Zhang J, Ren LD (2004) Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium-to high-grade metapelites. J Petrol 45:1907–1921Google Scholar
  4. 4.
    Wu CM, Zhao GC (2006) Recalibration of the garnet-muscovite (GM) geothermometer and the garnet-muscovite-plagioclase-quartz (GMPQ) geobarometer for metapelitic assemblages. J Petrol 47:2357–2368Google Scholar
  5. 5.
    Wu CM, Zhao GC (2007) The metapelitic garnet-biotite-muscovite-aluminosilicate-quartz (GBMAQ) geobarometer. Lithos 97:365–372Google Scholar
  6. 6.
    Gerya TV, Perchuk LL, Triboulet C et al (1997) Petrology of the Tumanshet zonal metamorphic complex, eastern Sayan. Petrol 5:503–533Google Scholar
  7. 7.
    Zenk M, Schulz B (2004) Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Mineral Mag 68:769–786Google Scholar
  8. 8.
    Massonne H-J, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol 96:212–224Google Scholar
  9. 9.
    Massonne H-J, Schreyer W (1989) Stability field of the high-pressure assemblage talc + phengite and two new phengite barometers. Eur J Mineral 1:391–410Google Scholar
  10. 10.
    Henry DJ, Guidotti CV (2002) Titanium in biotite from metapelitic rocks: temperature effects, crystal-chemical controls, and petrologic applications. Am Mineral 87:375–382Google Scholar
  11. 11.
    Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. Am Mineral 90:316–328Google Scholar
  12. 12.
    Wu CM, Cheng BH (2006) Valid garnet-biotite (GB) geothermometry and garnet-aluminum silicate-plagioclase-quartz (GASP) geobarometry in metapelitic rocks. Lithos 89:1–23Google Scholar
  13. 13.
    Huang MH, Buick IS, Hou LW (2003) Tectonometamorphic evolution of the eastern Tibet Plateau: evidence from the central Songpan-Garzê orogenic belt, western China. J Petrol 44:255–278Google Scholar
  14. 14.
    Weller OM, St-Onge MR, Waters DJ et al (2013) Quantifying Barrovian metamorphism in the Danba structural culmination of eastern Tibet. J Meta Geol 31:909–935Google Scholar
  15. 15.
    Ríos C, García C, Takasu A (2003) Tectono-metamorphic evolution of the Silgará formation metamorphic rocks in the southwestern Santander Massif, Colombian Andes. J S Am Earth Sci 16:133–154Google Scholar
  16. 16.
    Ferry JM (1981) Petrology of graphitic sulfide-rich schists from south-central Maine: an example of desulfidation during prograde regional metamorphism. Am Mineral 66:908–930Google Scholar
  17. 17.
    Himmelberg GR, Brew DA, Ford AB (1991) Development of inverted metamorphic isograds in the western metamorphic belt, Juneau, Alaska. J Meta Geol 9:165–180Google Scholar
  18. 18.
    Mezger JE, Chacko T, Erdmer P (2001) Metamorphism at a late mesozoic accretionary margin: a study from the Coastal Belt of the North American Cordillera. J Meta Geol 19:121–137Google Scholar
  19. 19.
    Novak JM, Holdaway MJ (1981) Metamorphic petrology, mineral equilibria, and polymetamorphism in the Augusta quadrangle, south-central Maine. Am Mineral 66:51–69Google Scholar
  20. 20.
    Holdaway MJ, Dutrow BL, Hinton RW (1988) Devonian and Carboniferous metamorphism in west-central maine: the muscovite-almandine geobarometer and the staurolite problem revisited. Am Mineral 73:20–47Google Scholar
  21. 21.
    Spear FS, Kohn MJ, Cheney JT (1999) P-T paths from anatectic pelites. Contrib Mineral Petrol 134:17–32Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations