Advertisement

Chinese Science Bulletin

, Volume 59, Issue 31, pp 4020–4029 | Cite as

Research progress in quantifying the mechanical properties of single living cells using atomic force microscopy

  • Mi Li
  • Lianqing LiuEmail author
  • Ning XiEmail author
  • Yuechao Wang
Progress Cell Biology

Abstract

The advent of atomic force microscopy (AFM) provides a powerful tool for investigating the behaviors of single living cells under near physiological conditions. Besides acquiring the images of cellular ultra-microstructures with nanometer resolution, the most remarkable advances are achieved on the use of AFM indenting technique to quantify the mechanical properties of single living cells. By indenting single living cells with AFM tip, we can obtain the mechanical properties of cells and monitor their dynamic changes during the biological processes (e.g., after the stimulation of drugs). AFM indentation-based mechanical analysis of single cells provides a novel approach to characterize the behaviors of cells from the perspective of biomechanics, considerably complementing the traditional biological experimental methods. Now, AFM indentation technique has been widely used in the life sciences, yielding a large amount of novel information that is meaningful to our understanding of the underlying mechanisms that govern the cellular biological functions. Here, based on the authors’ own researches on AFM measurement of cellular mechanical properties, the principle and method of AFM indentation technique was presented, the recent progress of measuring the cellular mechanical properties using AFM was summarized, and the challenges of AFM single-cell nanomechanical analysis were discussed.

Keywords

Atomic force microscopy Cellular mechanical properties Indentation Force curve Elastic modulus 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61175103, 61327014) and CAS FEA International Partnership Program for Creative Research Teams.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Stewart MP, Toyoda Y, Hyman AA et al (2011) Force probing cell shape changes to molecular resolution. Trends Biochem Sci 36:444–450CrossRefGoogle Scholar
  2. 2.
    Chen CS (2008) Mechanotransduction: a field pulling together. J Cell Sci 121:3285–3292CrossRefGoogle Scholar
  3. 3.
    Miller CJ, Davidson LA (2013) The interplay between cell signaling and mechanics in developmental processes. Nat Rev Genet 14:733–744CrossRefGoogle Scholar
  4. 4.
    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143CrossRefGoogle Scholar
  5. 5.
    Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRefGoogle Scholar
  6. 6.
    Li J, Han D, Zhao YP (2014) Kinetic behaviour of the cells touching substrate: the interfacial stiffness guides cell spreading. Sci Rep 4:3910Google Scholar
  7. 7.
    Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33CrossRefGoogle Scholar
  8. 8.
    Lee GYH, Lim CT (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol 25:111–118CrossRefGoogle Scholar
  9. 9.
    Cross SE, Jin YS, Rao JY et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783CrossRefGoogle Scholar
  10. 10.
    Swaminathan V, Mythreye K, O Brien ET et al (2011) Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 71:5075–5080CrossRefGoogle Scholar
  11. 11.
    Chowdhury F, Na S, Li D et al (2010) Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater 9:82–88CrossRefGoogle Scholar
  12. 12.
    Bergert M, Chandradoss SD, Desai RA et al (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc Natl Acad Sci USA 109:14434–14439CrossRefGoogle Scholar
  13. 13.
    Plodinec M, Loparic M, Monnier CA et al (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7:757–765CrossRefGoogle Scholar
  14. 14.
    Gossett DR, Tse HTK, Lee SA et al (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci USA 109:7630–7635CrossRefGoogle Scholar
  15. 15.
    Carlo DD (2012) A mechanical biomarker of cell state in medicine. J Lab Autom 17:32–42CrossRefGoogle Scholar
  16. 16.
    Cha S, Shin T, Lee SS et al (2012) Cell stretching measurement utilizing viscoelastic particle focusing. Anal Chem 84:10471–10477CrossRefGoogle Scholar
  17. 17.
    Mao X, Huang TJ (2012) Exploiting mechanical biomarkers in microfluidics. Lab Chip 12:4006–4009CrossRefGoogle Scholar
  18. 18.
    Beech JP, Holm SH, Adolfsson K et al (2012) Sorting cells by size, shape and deformability. Lab Chip 12:1048–1051CrossRefGoogle Scholar
  19. 19.
    Shojaei-Baghini E, Zheng Y, Sun Y (2013) Automated micropipette aspiration of single cells. Ann Biomed Eng 41:1208–1216CrossRefGoogle Scholar
  20. 20.
    Zhou ZL, Hui TH, Tang B et al (2014) Accurate measurement of stiffness of leukemia cells and leukocytes using an optical trap by a rate-jump method. RSC Adv 4:8453–8460CrossRefGoogle Scholar
  21. 21.
    Radmacher M (2002) Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol 68:67–90CrossRefGoogle Scholar
  22. 22.
    Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50CrossRefGoogle Scholar
  23. 23.
    Spedden E, White JD, Naumova EN et al (2012) Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy. Biophys J 103:868–877CrossRefGoogle Scholar
  24. 24.
    Heu C, Berquand A, Elie-Caille C et al (2012) Glyphosate-induced stiffening of HaCaT keratinocytes, a peak force tapping study on living cells. J Struct Biol 178:1–7CrossRefGoogle Scholar
  25. 25.
    Alsteens D, Trabelsi H, Soumillion P et al (2013) Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat Commun 4:2926CrossRefGoogle Scholar
  26. 26.
    Lam WA, Chaudhuri O, Crow A et al (2011) Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat Mater 10:61–66CrossRefGoogle Scholar
  27. 27.
    Stewart MP, Helenius J, Toyoda Y et al (2011) Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469:226–230CrossRefGoogle Scholar
  28. 28.
    Taatjes DJ, Quinn AS, Rand JH et al (2013) Atomic force microscopy: high resolution dynamic imaging of cellular and molecular structure in health and disease. J Cell Physiol 228:1949–1955CrossRefGoogle Scholar
  29. 29.
    Li M, Liu LQ, Xi N et al (2013) Progress of AFM single-cell and single-molecule morphology imaging. Chin Sci Bull 58:3177–3182CrossRefGoogle Scholar
  30. 30.
    Li M, Liu LQ, Xi N et al (2013) Mapping CD20 molecules on the lymphoma cell surface using atomic force microscopy. Chin Sci Bull 58:1516–1519CrossRefGoogle Scholar
  31. 31.
    Kirmizis D, Logothetidis S (2010) Atomic force microscopy probing in the measurement of cell mechanics. Int J Nanomed 5:137–145CrossRefGoogle Scholar
  32. 32.
    Gavara N, Chadwick RS (2012) Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat Nanotechnol 7:733–736CrossRefGoogle Scholar
  33. 33.
    Velegol SB, Logan BE (2002) Contributions of bacterial surface polymers, electrostatics, and cell elasticity to the shape of AFM force curves. Langmuir 18:5256–5262CrossRefGoogle Scholar
  34. 34.
    Martens JC, Radmacher M (2008) Softening of the actin cytoskeleton by inhibition of myosin II. Pflugers Arch Eur J Physiol 456:95–100CrossRefGoogle Scholar
  35. 35.
    Medalsy ID, Muller DJ (2013) Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. ACS Nano 7:2642–2650CrossRefGoogle Scholar
  36. 36.
    Carl P, Schillers H (2008) Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Eur J Physiol 457:551–559CrossRefGoogle Scholar
  37. 37.
    Oberleithner H, Callies C, Kusche-Vihrog K et al (2009) Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci USA 106:2829–2834CrossRefGoogle Scholar
  38. 38.
    Mahaffy RE, Shih CK, MacKintosh FC et al (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett 85:880–883CrossRefGoogle Scholar
  39. 39.
    Nikkhah M, Strobl JS, Schmelz EM et al (2011) Evaluation of the influence of growth medium composition on cell elasticity. J Biomech 44:762–766CrossRefGoogle Scholar
  40. 40.
    Li M, Liu LQ, Xi N et al (2012) Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Sci China Life Sci 55:968–973CrossRefGoogle Scholar
  41. 41.
    Stewart MP, Hodel AW, Spielhofer A et al (2013) Wedged AFM-cantilevers for parallel plate cell mechanics. Methods 60:186–194CrossRefGoogle Scholar
  42. 42.
    Chaudhuri O, Parekh SH, Lam WA et al (2009) Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat Methods 6:383–387CrossRefGoogle Scholar
  43. 43.
    Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeleton structure and mechanics in fibroblast: an atomic force microscopy study. Biophys J 78:520–535CrossRefGoogle Scholar
  44. 44.
    Costa KD (2004) Single-cell elastography: probing for disease with the atomic force microscope. Dis Markers 19:139–154CrossRefGoogle Scholar
  45. 45.
    Rotsch C, Jacobson K, Radmacher M (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci USA 96:921–926CrossRefGoogle Scholar
  46. 46.
    Stolz M, Raiteri R, Daniels AU et al (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86:3269–3283CrossRefGoogle Scholar
  47. 47.
    Kasas S, Longo G, Dietler G (2013) Mechanical properties of biological specimens explored by atomic force microscopy. J Phys D Appl Phys 46:133001CrossRefGoogle Scholar
  48. 48.
    Tao NJ, Lindsay SM, Lees S (1992) Measuring the microelastic properties of biological material. Biophys J 63:1165–1169CrossRefGoogle Scholar
  49. 49.
    Radmacher M, Monika F, Hansma PK (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J 69:264–270CrossRefGoogle Scholar
  50. 50.
    Maivald P, Butt HJ, Gould SAC et al (1991) Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2:103–106CrossRefGoogle Scholar
  51. 51.
    Hoh JH, Schoenenberger CA (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci 107:1105–1114Google Scholar
  52. 52.
    Radmacher M, Fritz M, Kacher CM et al (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 79:556–567CrossRefGoogle Scholar
  53. 53.
    Cuerrier CM, Gagner A, Lebel R et al (2009) Effect of thrombin and bradykinin on endothelial cell mechanical properties monitored through membrane deformation. J Mol Recognit 22:389–396CrossRefGoogle Scholar
  54. 54.
    Pelling AE, Veraitch FS, Chu CPK et al (2009) Mechanical dynamics of single cells during early apoptosis. Cell Motil Cytoskelet 66:409–422CrossRefGoogle Scholar
  55. 55.
    Hu M, Wang J, Zhao H et al (2009) Nanostructure and nanomechanics analysis of lymphocyte using AFM: from resting, activated to apoptosis. J Biomech 42:1513–1519CrossRefGoogle Scholar
  56. 56.
    Liu Y, Feng J, Shi L et al (2012) In situ mechanical analysis of cardiomyocytes at nano scales. Nanoscale 4:99–102CrossRefGoogle Scholar
  57. 57.
    Li M, Liu L, Xi N et al (2014) Nanoscale imaging and mechanical analysis of Fc receptor-mediated macrophage phagocytosis against cancer cells. Langmuir 30:1609–1621CrossRefGoogle Scholar
  58. 58.
    Berdyyeva TK, Woodworth CD, Sokolov I (2005) Human epithelial cells increase their rigidity with ageing in vitro: direct measurements. Phys Med Biol 50:81–92CrossRefGoogle Scholar
  59. 59.
    Leporatti S, Gerth A, Kohler G et al (2006) Elasticity and adhesion of resting and lipopolysaccharide-stimulated macrophages. FEBS Lett 580:450–454CrossRefGoogle Scholar
  60. 60.
    Lulevich V, Yang H, Isseroff RR et al (2010) Single cell mechanics of keratinocyte cells. Ultramicroscopy 110:1435–1442CrossRefGoogle Scholar
  61. 61.
    Li M, Xiao X, Liu L et al (2013) Atomic force microscopy study of the antigen-antibody binding force on patient cancer cells based on ROR1 fluorescence recognition. J Mol Recognit 26:432–438CrossRefGoogle Scholar
  62. 62.
    Lekka M, Gil D, Pogoda K et al (2012) Cancer cell detection in tissue sections using AFM. Arch Biochem Biophys 518:151–156CrossRefGoogle Scholar
  63. 63.
    Zhou Z, Zheng C, Li S et al (2013) AFM nanoindentation detection of the elastic modulus of tongue squamous carcinoma cells with different metastatic potentials. Nanomedicine 9:864–874CrossRefGoogle Scholar
  64. 64.
    Mao Y, Sun Q, Wang X et al (2009) In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy. Appl Phys Lett 95:013704CrossRefGoogle Scholar
  65. 65.
    Longo G, Alonso-Sarduy L, Rio LM et al (2013) Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol 8:522–526CrossRefGoogle Scholar
  66. 66.
    McKendry RA, Kappeler N (2013) Sensors: good vibrations for bad bacteria. Nat Nanotechnol 8:483–484CrossRefGoogle Scholar
  67. 67.
    Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122CrossRefGoogle Scholar
  68. 68.
    Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Ann Rev Biomed Eng 9:1–34CrossRefGoogle Scholar
  69. 69.
    Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492CrossRefGoogle Scholar
  70. 70.
    Fritsch A, Hockel M, Kiessling T et al (2010) Are biomechanical changes necessary for tumour progression. Nat Phys 6:730–732CrossRefGoogle Scholar
  71. 71.
    Dufrene YF, Pelling AE (2013) Force nanoscopy of cell mechanics and cell adhesion. Nanoscale 5:4094–4104CrossRefGoogle Scholar
  72. 72.
    Muller DJ, Dufrene YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21:461–469CrossRefGoogle Scholar
  73. 73.
    Wang Z, Liu L, Wang Y et al (2012) A fully automated system for measuring cellular mechanical properties. J Lab Autom 17:443–448CrossRefGoogle Scholar
  74. 74.
    Lin DC, Dimitriadis EK, Horkay F (2007) Robust strategies for automated AFM force curve analysis: I. non-adhesive indentation of soft, inhomogeneous materials. J Biomech Eng 129:430–440CrossRefGoogle Scholar
  75. 75.
    Kasas S, Wang X, Hirling H et al (2005) Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motil Cytoskelet 62:124–132CrossRefGoogle Scholar
  76. 76.
    Rosenbluth MJ, Lam WA, Fletcher DA (2006) Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J 90:2994–3003CrossRefGoogle Scholar
  77. 77.
    Roduit C, Sekatski S, Dietler G et al (2009) Stiffness tomography by atomic force microscopy. Biophys J 97:674–677CrossRefGoogle Scholar
  78. 78.
    Labernadie A, Thibault C, Vieu C et al (2010) Dynamics of podosome stiffness revealed by atomic force microscopy. Proc Natl Acad Sci USA 107:21016–21021CrossRefGoogle Scholar
  79. 79.
    Chahine NO, Blanchette C, Thomas CB et al (2013) Effect of age and cytoskeletal elements on the indentation-dependent mechanical properties of chondrocytes. PLoS One 8:e61651CrossRefGoogle Scholar
  80. 80.
    Krause M, Riet J, Wolf K (2013) Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy. Phys Biol 10:065002CrossRefGoogle Scholar
  81. 81.
    Yu JQ, Yuan JH, Zhang XJ et al (2013) Nanoscale imaging with an integrated system combining stimulated emission depletion microscope and atomic force microscope. Chin Sci Bull 58:4045–4050CrossRefGoogle Scholar
  82. 82.
    Suzuki Y, Sakai N, Yoshida A et al (2013) High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events. Sci Rep 3:2131Google Scholar
  83. 83.
    Fukuda S, Uchihashi T, Iino R et al (2013) High-speed atomic force microscope combined with single-molecule fluorescence microscope. Rev Sci Instrum 84:073706CrossRefGoogle Scholar
  84. 84.
    Colom A, Casuso I, Rico F et al (2013) A hybrid high-speed atomic force-optical microscope for visualizing single membrane proteins on eukaryotic cells. Nat Commun 4:2155CrossRefGoogle Scholar
  85. 85.
    Churnside AB, Sullan RMA, Nguyen DM et al (2012) Routine and timely sub-piconewton force stability and precision for biological applications of atomic force microscopy. Nano Lett 12:3557–3561CrossRefGoogle Scholar
  86. 86.
    Linkov P, Artemyev M, Efimov AE et al (2013) Comparative advantages and limitations of the basic metrology methods applied to the characterization of nanomaterials. Nanoscale 5:8781–8798CrossRefGoogle Scholar
  87. 87.
    Bhatia B, Karthik J, Gahill DG et al (2011) High-temperature piezoresponse force microscopy. Appl Phys Lett 99:173103CrossRefGoogle Scholar
  88. 88.
    Stan G, Solares SD, Pittenger B et al (2014) Nanoscale mechanics by tomographic contact resonance atomic force microscopy. Nanoscale 6:962–969CrossRefGoogle Scholar
  89. 89.
    Dufrene YF, Martinez-Martin D, Medalsy I et al (2013) Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat Methods 10:847–854CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Robotics, Shenyang Institute of AutomationChinese Academy of SciencesShenyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Mechanical and Biomedical EngineeringCity University of Hong KongHong KongChina

Personalised recommendations