Skip to main content
Log in

Atmospheric duct estimation from multi-source radar sea clutter returns: theoretical framework and preliminary numerical results

  • Article
  • Atmospheric Science
  • Published:
Chinese Science Bulletin

Abstract

Refractivity from clutter (RFC) technique estimates lower atmospheric refractivity from radar sea clutter returns. An important issue of RFC is how to make the estimate more robust. Rather than using only single beam radar sea clutter returns, this paper puts forward a theoretical framework of combining multi-source clutter power to improve the retrieved results by the variational adjoint approach. The derivation of the adjoint is accomplished by an analytical transformation of the parabolic equation model in a continuous domain. To test the theoretical algorithm, numerical simulations using multi-elevation clutter observations are carried. The results demonstrate that combining two elevation beams gives more stable estimate than using only single beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson KD (1995) Radar detection of low-altitude targets in a maritime environment. IEEE Trans Antennas Propag 43:609–613

    Article  Google Scholar 

  2. Skolnik MI (2008) Radar handbook. McGraw-Hill, New York

    Google Scholar 

  3. Baynton HW (1965) Profiles of refractive index and humidity over the west indies. Mon Weather Rev 93:171–174

    Article  Google Scholar 

  4. Babin SM, Rowland JR (1992) Observation of a strong surface radar duct using helicopter acquired fine-scale radio refractivity measurements. Geophys Res Lett 19:917–920

    Article  Google Scholar 

  5. Mentes SS, Kaymaz Z (2007) Investigation of surface duct conditions over Istanbul, Turkey. J Appl Meteorol Clim 46:318–337

    Article  Google Scholar 

  6. Zhao XF, Wang DX, Huang SX et al (2013) Statistical estimations of atmospheric duct over the South China Sea and the Tropical Eastern Indian Ocean. Chin Sci Bull 58:2794–2797

    Article  Google Scholar 

  7. Zhu M, Atkinson BW (2005) Simulated climatology of atmospheric ducts over the Persian Gulf. Boundary-Layer Meteorol 115:433–452

    Article  Google Scholar 

  8. Haack T, Wang C, Garrett S et al (2010) Mesoscale modeling of boundary layer refractivity and atmospheric ducting. J Appl Meteorol Clim 49:2437–2457

    Article  Google Scholar 

  9. Rogers LT, Hattan CP, Stapleton JK (2000) Estimating evaporation duct heights from radar sea echo. Radio Sci 35:955–966

    Article  Google Scholar 

  10. Gerstoft P, Rogers LT, Krolik JL et al (2003) Inversion for refractivity parameters from radar sea clutter. Radio Sci. doi:10.1029/2002RS002640

    Google Scholar 

  11. Gerstoft P, Rogers LT, Hodgkiss WS et al (2003) Refractivity estimation using multiple elevation angles. IEEE J Oceanic Eng 28:513–525

    Article  Google Scholar 

  12. Kraut S, Anderson RH, Krolik JL (2004) A generalized Karhunen-Loeve basis for efficient estimation of tropospheric refractivity using radar clutter. IEEE Trans Signal Proces 52:48–60

    Article  Google Scholar 

  13. Yardim C, Gerstoft P, Hodgkiss WS (2006) Estimation of radio refractivity from radar clutter using Bayesian Monte Carlo analysis. IEEE Trans Antennas Propag 54:1318–1327

    Article  Google Scholar 

  14. Yardim C, Gerstoft P, Hodgkiss WS (2007) Statistical maritime radar duct estimation using hybrid genetic algorithm-Markov chain Monte Carlo method. Radio Sci. doi:10.1029/2006RS003561

    Google Scholar 

  15. Yardim C, Gerstoft P, Hodgkiss WS (2008) Tracking refractivity from clutter using Kalman and particle filters. IEEE Trans Antennas Propag 56:1058–1070

    Article  Google Scholar 

  16. Huang SX, Zhao XF, Sheng Z (2009) Refractivity estimation from radar sea clutter. Chin Phys B 18:5084–5090

    Article  Google Scholar 

  17. Douvenot R, Fabbro V, Gerstoft P et al (2010) Real time refractivity from clutter using a best fit approach improved with physical information. Radio Sci. doi:10.1029/2009RS004137

    Google Scholar 

  18. Zhang JP, Wu ZS, Hu RX (2011) Combined estimation of low-altitude radio refractivity based on sea clutters from multiple shipboard radars. J Electromagn Waves Appl 25:1201–1212

    Article  Google Scholar 

  19. Zhang JP, Wu ZS, Zhang YS et al (2012) Evaporation duct retrieval using changes in radar sea clutter power versus receiving height. Prog Electromagn Res 126:555–571

    Article  Google Scholar 

  20. Karimian A, Yardim C, Gerstoft P et al (2012) Estimation of radio refractivity using a multiple angle clutter model. Radio Sci. doi:10.1029/2011RS004701

    Google Scholar 

  21. Zhao XF, Huang SX, Wang DX (2012) Using particle filter to track horizontal variations of atmospheric duct structure from radar sea clutter. Atmos Meas Tech 5:2859–2866

    Article  Google Scholar 

  22. Karimian A, Yardim C, Gerstoft P et al (2011) Refractivity estimation from sea clutter: an invited review. Radio Sci. doi:10.1029/2011RS004818

    Google Scholar 

  23. Zhao XF, Huang SX (2012) Estimation of atmospheric duct structure using radar sea clutter. J Atmos Sci 69:2808–2818

    Article  Google Scholar 

  24. Kuttler JR, Dockery GD (1991) Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere. Radio Sci 26:381–393

    Article  Google Scholar 

  25. Barrios AE (1992) Parabolic equation modeling in horizontally inhomogeneous environments. IEEE Trans Antennas Propag 40:791–797

    Article  Google Scholar 

  26. Brekhovskikh LM, Lysanov YP (2002) Fundamentals of ocean acoustics. AIP Press, New York

    Google Scholar 

  27. Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer Academic Publishers, London

    Book  Google Scholar 

  28. Zhu C, Byrd RH, Lu P et al (1995) L-BFGS-B Fortran subroutines for large-scale bound constrained optimization. Northwestern University EECS Tech. Rep. NAM12

Download references

Acknowledgments

The authors thank Prof. Peter Gerstoft at the Marine Physical Laboratory, University of California, San Diego, for helpful discussions about RFC problem. The refractivity data used in this paper are acquired from Prof. Peter Gerstoft’s software package SAGA. This work was supported by the National Natural Science Foundation of China (41175025) and the National Basic Research Program of China (2011CB403500).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Zhao.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wang, D. & Huang, S. Atmospheric duct estimation from multi-source radar sea clutter returns: theoretical framework and preliminary numerical results. Chin. Sci. Bull. 59, 4899–4906 (2014). https://doi.org/10.1007/s11434-014-0428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0428-x

Keywords

Navigation