Advertisement

Chinese Science Bulletin

, Volume 59, Issue 21, pp 2541–2546 | Cite as

Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad

  • Yan Chang
  • Chunxiang Xu
  • Shibin Zhang
  • Lili Yan
Article Quantum Information

Abstract

A controlled quantum secure direct communication and authentication protocol is proposed with a quantum one-time pad based on five-particle cluster state. Photon 4 in each five-particle cluster state is sent to the controller as permission. Unitary operation I (U) on photon 4 according to identity-string of the receiver is used to forbid the controller to deduce secret message. The classical XOR operation serving as a one-time-pad is used to forbid external eavesdroppers to eavesdrop. Eavesdropping detection and identity authentication are implemented by previously shared reusable base identity-strings. In one transmission, one qubit of each five-particle cluster state is used as controller’s permission, and two qubits are used to transmit two classical bit information.

Keywords

Controlled quantum secure direct communication Quantum secure direct communication Five-particle cluster state Authentication One-time pad 

Notes

Acknowledgement

This work was supported by the National Natural Science Foundation of China (61370203), the Science & Technology Pillar Program of Sichuan Province of China (2013GZX0137) and the Youth Fund Project of Sichuan Province of China (12ZB017).

References

  1. 1.
    Bennett CH, Brassard G (1984) Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing. IEEE, Bangalore, pp 175–179Google Scholar
  2. 2.
    Ekert AK (1991) Quantum cryptography based on Bell’s theorem. Phys Rev Lett 67:661–663CrossRefGoogle Scholar
  3. 3.
    Bennett CH, Brassard G, Mermin ND (1992) Quantum cryptography without Bell’s theorem. Phys Rev Lett 68:557–559CrossRefGoogle Scholar
  4. 4.
    Bennett CH, Brassard G, Crépeau C (1993) Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys Rev Lett 70:1895–1899Google Scholar
  5. 5.
    Yan FL, Wang D (2003) Probabilistic and controlled teleportation of unknown quantum states. Phys Lett A 316:297–303CrossRefGoogle Scholar
  6. 6.
    Zhan YB (2004) Teleportation of N-particle entangled W state via entanglement swapping. Chin Phys B 13:1801–1805CrossRefGoogle Scholar
  7. 7.
    Deng FG, Li CY, Li YS et al (2005) Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys Rev A 72:022338CrossRefGoogle Scholar
  8. 8.
    Li YL, Feng J (2007) Teleportation of arbitrary three-particle GHz state using single three-particle maximal GHz state or two EPR states. Acta Phys Sin 56:1888–1894 (in Chinese)Google Scholar
  9. 9.
    Hillery M, Buzek V, Berthiaume A (1999) Quantum secret sharing. Phys Rev A 59:1829–1834CrossRefGoogle Scholar
  10. 10.
    Karlsson A, Koashi M, Imoto N (1999) Quantum entanglement for secret sharing and secret splitting. Phys Rev A 59:162–168CrossRefGoogle Scholar
  11. 11.
    Xiao L, Long GL, Deng FG et al (2004) Efficient multiparty quantum-secret-sharing schemes. Phys Rev A 69:052307CrossRefGoogle Scholar
  12. 12.
    Chen P, Deng FG, Long GL (2006) High-dimension multiparty quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Chin Phys B 15:2228–2235CrossRefGoogle Scholar
  13. 13.
    Han LF, Liu YM, Yuan H et al (2007) Efficient multiparty-to-multiparty quantum secret sharing via continuous variable operations. Chin Phys Lett 24:3312–3315CrossRefGoogle Scholar
  14. 14.
    Zhou P, Li XH, Deng FG et al (2007) Efficient three-party quantum secret sharing with single photons. Chin Phys Lett 24:2181–2184CrossRefGoogle Scholar
  15. 15.
    Long GL, Liu XS (2002) Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A 65:032302CrossRefGoogle Scholar
  16. 16.
    Deng FG, Long GL, Liu XS (2003) Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys Rev A 68:042317CrossRefGoogle Scholar
  17. 17.
    Deng FG, Long GL (2004) Secure direct communication with a quantum one-time pad. Phys Rev A 69:052319CrossRefGoogle Scholar
  18. 18.
    Wang C, Deng FG, Li YS et al (2005) Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A 71:044305CrossRefGoogle Scholar
  19. 19.
    Wang C, Deng FG, Long GL (2005) Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt Commun 253:15CrossRefGoogle Scholar
  20. 20.
    Deng FG, Li XH, Li CY et al (2006) Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys Lett A 359:359–365CrossRefGoogle Scholar
  21. 21.
    Long GL, Deng FG, Wang C et al (2007) Quantum secure direct communication and deterministic secure quantum communication. Front Phys China 2:251–272CrossRefGoogle Scholar
  22. 22.
    Li XH, Li CY, Deng FG et al (2007) Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys B 16:2149–2153CrossRefGoogle Scholar
  23. 23.
    Long GL, Wang C, Deng FG et al (2010) Advances in lasers and electro optics. In: Costa N, Cartaxo A (eds) Quantum direct communication. INTECHGoogle Scholar
  24. 24.
    Yang J, Wang C, Zhang R (2010) Faithful quantum secure direct communication protocol against collective noise. Chin Phys B 19:110311CrossRefGoogle Scholar
  25. 25.
    Liu D, Pei CX, Quan DX et al (2010) A new quantum secure direct communication scheme with authentication. Chin Phys Lett 27:050306CrossRefGoogle Scholar
  26. 26.
    Gao F, Qin SJ, Guo FZ et al (2011) Cryptanalysis of quantum secure direct communication and authentication scheme via Bell states. Chin Phys Lett 28:020303CrossRefGoogle Scholar
  27. 27.
    Wang TJ, Li T, Du FF et al (2011) High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin Phys Lett 28:040305CrossRefGoogle Scholar
  28. 28.
    Gu B, Huang YG, Fang X et al (2011) A two-step quantum secure direct communication protocol with hyperentanglement. Chin Phys B 20:100309CrossRefGoogle Scholar
  29. 29.
    Gu B, Zhang CY, Cheng GS et al (2011) Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China Phys Mech Astron 54:942–947CrossRefGoogle Scholar
  30. 30.
    Li J, Jin HF, Jing B (2011) Improved quantum “Ping-pong” protocol based on GHZ state and classical XOR operation. Sci China Phys Mech Astron 54:1612–1618Google Scholar
  31. 31.
    Yang CW, Tsai CW, Hwang T (2011) Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci China Phys Mech Astron 54:496–501CrossRefGoogle Scholar
  32. 32.
    Li J, Jin HF, Jing B (2012) Improved eavesdropping detection strategy based on four-particle cluster state in quantum direct communication protocol. Chin Sci Bull 57:4434–4441CrossRefGoogle Scholar
  33. 33.
    Song SY, Wang C (2012) Recent development in quantum communication. Chin Sci Bull 57:4694–4700CrossRefGoogle Scholar
  34. 34.
    Huang W, Wen QY, Jia HY et al (2012) Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin Phys B 21:100308CrossRefGoogle Scholar
  35. 35.
    Xu SJ, Chen XB, Niu XX et al (2013) High-efficiency quantum steganography based on the tensor product of Bell states. Sci China Phys Mech Astron 56:1745–1754CrossRefGoogle Scholar
  36. 36.
    Tsai CW, Hwang T (2013) Deterministic quantum communication using the symmetric W state. Sci China Phys Mech Astron 56:1903–1908CrossRefGoogle Scholar
  37. 37.
    Ren BC, Wei HR, Hua M et al (2013) Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur Phys J D 67:30CrossRefGoogle Scholar
  38. 38.
    Wang J, Zhang Q, Tang CJ (2006) Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt Commun 266:732–737CrossRefGoogle Scholar
  39. 39.
    Wang J, Chen HQ, Zhang Q et al (2007) Multiparty controlled quantum secure direct communication protocol. Acta Phys Sin 56:673–677 (in Chinese)Google Scholar
  40. 40.
    Wang TY, Qin SJ, Wen QY et al (2008) Analysis and improvement of multiparty controlled quantum secure direct communication protocol. Acta Phys Sin 57:7452–7456 (in Chinese)Google Scholar
  41. 41.
    Gao F, Qin SJ, Wen QY et al (2010) Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt Commun 283:192–195CrossRefGoogle Scholar
  42. 42.
    Li CY, Zhou HY, Wang Y et al (2005) Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett 22:1049–1052CrossRefGoogle Scholar
  43. 43.
    Li CY, Li XH, Deng FG et al (2006) Efficient quantum cryptography network without entanglement and quantum memory. Chin Phys Lett 23:2897–2899Google Scholar
  44. 44.
    Deng FG, Long GL, Wang Y et al (2004) Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin Phys Lett 21:2097–2100CrossRefGoogle Scholar
  45. 45.
    Wen K, Deng FG, Long GL (2007) Secure reusable base-string in quantum key distribution. arXiv:0706.3791v1Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yan Chang
    • 1
    • 2
  • Chunxiang Xu
    • 1
  • Shibin Zhang
    • 1
    • 2
  • Lili Yan
    • 2
  1. 1.School of Computer Science & EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Network EngineeringChengdu University of Information TechnologyChengduChina

Personalised recommendations