Chinese Science Bulletin

, Volume 59, Issue 20, pp 2460–2469 | Cite as

Self-heating dependent characteristic of GaN-based light-emitting diodes with and without AlGaInN electron blocking layer

Article Engineering Thermophysics

Abstract

In this study, GaN-based light-emitting diodes (LEDs) with and without AlGaInN electron blocking layer (EBL) under self-heating effect are numerically studied. The energy band diagram, carrier transport and distribution characteristics, internal Joule heat and non-radiative recombination heat characteristics, and internal quantum efficiency are investigated. The effect of Auger recombination coefficient on efficiency droop under self-heating effect is also studied. The simulation results show that efficiency droop is markedly improved when an AlGaInN EBL is placed between p-type GaN layer and active region. However, the chip temperature of LED is significantly increased simultaneously. The results also indicate that Auger recombination can be neglected because it is not the major contributor for the internal heat source. The efficiency droop is unrelated to the internal heat source. However, both electron leakage and Auger recombination play important roles in efficiency droop mechanism under self-heating effect.

Keywords

Light-emitting diodes Efficiency droop Self-heating Electron blocking layer Auger recombination 

References

  1. 1.
    Schubert EF, Kim JK (2005) Solid-state light sources getting smart. Science 208:1274–1278CrossRefGoogle Scholar
  2. 2.
    Krames MR, Shchekin OB, Mueller-Mach R et al (2007) Status and future of high-power light-emitting diodes for solid-state lighting. J Disp Technol 3:160–175CrossRefGoogle Scholar
  3. 3.
    Crawford MH (2009) LEDs for solid-state lighting: performance challenges and recent advances. IEEE J Sel Top Quantum Electron 15:1028–1040CrossRefGoogle Scholar
  4. 4.
    Niu QL, Zhang Y, Wang YL et al (2012) High-efficiency conjugated-polymer-hosted blue phosphorescent light-emitting diodes. Chin Sci Bull 57:3639–3643CrossRefGoogle Scholar
  5. 5.
    Xu YQ, Fan GH, Zhou DT et al (2012) Advantage of dual wavelength light-emitting diodes with dip-shaped quantum wells. Chin Sci Bull 57:2562–2566CrossRefGoogle Scholar
  6. 6.
    Zhang WW, Wu ZX, Zhang XW et al (2011) Dependence of the stability of organic light-emitting diodes on driving mode. Chin Sci Bull 56:2210–2214CrossRefGoogle Scholar
  7. 7.
    Jiang HJ (2011) Effective adjustment of the optoelectronic properties of organic conjugated materials by synthesizing p–n diblock molecules. Chin Sci Bull 56:119–136CrossRefGoogle Scholar
  8. 8.
    Meng LC, Lou ZD, Yang SY et al (2011) Energy distribution in white organic light-emitting diodes with three primary color emitting layers. Sci China Phys Mech Astron 54:84–88CrossRefGoogle Scholar
  9. 9.
    Wang XL, Wang XH, Jia HQ et al (2010) Recent progress in single chip white light-emitting diodes with the InGaN underlying layer. Sci China Phys Mech Astron 53:445–448CrossRefGoogle Scholar
  10. 10.
    Zhen H, Xiong D, Zhou X et al (2006) Study on the p-type QWIP-LED device. Sci China G Phys Mech Astron 49:401–410CrossRefGoogle Scholar
  11. 11.
    Kim MH, Schubert MF, Dai Q et al (2007) Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett 91:183507CrossRefGoogle Scholar
  12. 12.
    Schubert MF, Xu J, Kim JK et al (2008) Polarization-matched GaInN/AlGaInN multi-quantum-well light emitting diodes with reduced efficiency droop. Appl Phys Lett 93:041102CrossRefGoogle Scholar
  13. 13.
    Choi S, Kim HJ, Kim SS et al (2010) Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer. Appl Phys Lett 96:221105CrossRefGoogle Scholar
  14. 14.
    Wang CH, Chen JR, Chiu CH et al (2010) Temperature dependent electroluminescence efficiency in blue InGaN–GaN light emitting diodes with different well widths. IEEE Photon Technol Lett 22:236–238CrossRefGoogle Scholar
  15. 15.
    Zhao HP, Liu GY, Zhang J et al (2011) Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt Express 19:A991–A1007CrossRefGoogle Scholar
  16. 16.
    Ding K, Zeng YP, Wei XC et al (2009) A wide-narrow well design for understanding the efficiency droop in InGaN/GaN light-emitting diodes. Appl Phys B 97:465–468CrossRefGoogle Scholar
  17. 17.
    Li YL, Huang YR, Lai YH (2007) Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness. Appl Phys Lett 91:181113CrossRefGoogle Scholar
  18. 18.
    Han SH, Lee DY, Shim HW et al (2010) Improvement of efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with trapezoidal wells. J Phys D 43:354004CrossRefGoogle Scholar
  19. 19.
    Lee YJ, Chen CH, Lee CJ (2010) Reduction in the efficiency-droop effect of InGaN green light-emitting diodes using gradual quantum wells. IEEE Photon Technol Lett 22:1506–1508CrossRefGoogle Scholar
  20. 20.
    Chang JY, Tsai MC, Kuo YK (2010) Advantages of blue InGaN light-emitting diodes with AlGaN barriers. Opt Lett 35:1368–1370CrossRefGoogle Scholar
  21. 21.
    Kuo YK, Chang JY, Tsai MC et al (2009) Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers. Appl Phys Lett 95:011116CrossRefGoogle Scholar
  22. 22.
    Kuo YK, Wang TH, Chang JY (2012) Advantages of blue InGaN light-emitting diodes with InGaN–AlGaN–InGaN barriers. Appl Phys Lett 100:031112CrossRefGoogle Scholar
  23. 23.
    Liu JP, Ryou JH, Dupuis RD et al (2008) Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes. Appl Phys Lett 93:021102CrossRefGoogle Scholar
  24. 24.
    Tsai MC, Yen SH, Kuo YK (2011) Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers. Appl Phys Lett 98:111114CrossRefGoogle Scholar
  25. 25.
    Wang CH, Chang SP, Ku PH et al (2011) Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers. Appl Phys Lett 99:171106CrossRefGoogle Scholar
  26. 26.
    Ni X, Fan Q, Shimada R et al (2008) Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells. Appl Phys Lett 93:171113CrossRefGoogle Scholar
  27. 27.
    Han SH, Lee DY, Lee SJ et al (2009) Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes. Appl Phys Lett 94:231123CrossRefGoogle Scholar
  28. 28.
    Yen SH, Tsai MC, Tsai ML et al (2009) Effect of n-type AlGaN layer on carrier transportation and efficiency droop of blue InGaN light-emitting diodes. IEEE Photon Technol Lett 21:975–977CrossRefGoogle Scholar
  29. 29.
    Lee KB, Parbrook PJ, Wang T et al (2009) Effect of the AlGaN electron blocking layer thickness on the performance of AlGaN-based ultraviolet light-emitting diodes. J Cryst Growth 311:2857–2859CrossRefGoogle Scholar
  30. 30.
    Xia CS, Li ZM, Lu W et al (2012) Efficiency enhancement of blue InGaN/GaN light-emitting diodes with an AlGaN–GaN–AlGaN electron blocking layer. J Appl Phys 111:094503CrossRefGoogle Scholar
  31. 31.
    Kuo YK, Chang JY, Tsai MC (2010) Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer. Opt Lett 35:3285–3287CrossRefGoogle Scholar
  32. 32.
    Wang CH, Ke CC, Lee CY et al (2010) Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer. Appl Phys Lett 97:261103CrossRefGoogle Scholar
  33. 33.
    Xia CS, Li ZM, Lu W et al (2011) Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier. Appl Phys Lett 99:233501CrossRefGoogle Scholar
  34. 34.
    Kuo YK, Tsai MC, Yen SH et al (2010) Effect of p-type last barrier on efficiency droop of blue InGaN light-emitting diodes. IEEE J Quantum Electron 46:1214–1220CrossRefGoogle Scholar
  35. 35.
    Kuo YK, Shih YH, Tsai MC et al (2011) Improvement in electron overflow of near-ultraviolet InGaN LEDs by specific design on last barrier. IEEE Photon Technol Lett 23:1630–1632CrossRefGoogle Scholar
  36. 36.
    Yen SH, Tsai ML, Tsai MC et al (2010) Investigation of optical performance of InGaN MQW LED with thin last barrier. IEEE Photon Technol Lett 22:1787–1789CrossRefGoogle Scholar
  37. 37.
    Chen JR, Lu TC, Kuo HC et al (2010) Study of InGaN–GaN light-emitting diodes with different last barrier thicknesses. IEEE Photon Technol Lett 22:860–862CrossRefGoogle Scholar
  38. 38.
    Shen YC, Mueller GO, Watanabe S et al (2007) Auger recombination in InGaN measured by photoluminescence. Appl Phys Lett 91:141101CrossRefGoogle Scholar
  39. 39.
    Chen JR, Wu YC, Ling SC et al (2010) Investigation of wavelength-dependent efficiency droop in InGaN light-emitting diodes. Appl Phys B 98:779–789CrossRefGoogle Scholar
  40. 40.
    Efremov AA, Bochkareva NI, Gorbunov RI et al (2006) Effect of the Joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors 40:605–610CrossRefGoogle Scholar
  41. 41.
    Chen YX, Shen GD, Guo WL et al (2011) Internal quantum efficiency drop induced by the heat generation inside of light emitting diodes (LEDs). Chin Phys B 20:017204CrossRefGoogle Scholar
  42. 42.
    Hirayama H (2005) Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes. J Appl Phys 97:091101CrossRefGoogle Scholar
  43. 43.
    Ryu HY, Shim JI, Kim CH et al (2011) Efficiency and electron leakage characteristics in GaN-based light-emitting diodes without AlGaN electron-blocking-layer structures. IEEE Photon Technol Lett 23:1866–1868CrossRefGoogle Scholar
  44. 44.
    Chuang SL, Chang CS (1996) k·p method for strained wurtzite semiconductors. Phys Rev B 54:2491–2504CrossRefGoogle Scholar
  45. 45.
    Chuang SL, Chang CS (1997) A band-structure model of strained quantum-well wurtzite semiconductors. Semicond Sci Technol 12:252–263CrossRefGoogle Scholar
  46. 46.
    Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89:5815–5875CrossRefGoogle Scholar
  47. 47.
    Vurgaftman I, Meyer JR (2003) Band parameters for nitrogen containing semiconductors. J Appl Phys 94:3675–3696CrossRefGoogle Scholar
  48. 48.
    Fiorentini V, Bernardini F, Ambacher O (2002) Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl Phys Lett 80:1204–1206CrossRefGoogle Scholar
  49. 49.
    Renner F, Kiesel P, Döhler GH et al (2002) Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy. Appl Phys Lett 81:490–492CrossRefGoogle Scholar
  50. 50.
    Zhang H, Miller EJ, Yu ET et al (2004) Measurement of polarization charge and conduction-band offset at InxGa1−xN/GaN heterojunction interfaces. Appl Phys Lett 84:4644–4646CrossRefGoogle Scholar
  51. 51.
    Caughey CM, Thomas RE (1967) Carrier mobilities in silicon empirically related to doping and field. Proc IEEE 55:2192–2193CrossRefGoogle Scholar
  52. 52.
    Piprek J (2003) Semiconductor optoelectronic devices: introduction to physics and simulation. Academic press, San Diego, pp 145–147Google Scholar
  53. 53.
    Wang TH, Xu JL, Wang XD (2012) The effect of multi-quantum barrier structure on light-emitting diodes performance by a non-isothermal model. Chin Sci Bull 57:3937–3942CrossRefGoogle Scholar
  54. 54.
    Lee HK, Yu JS, Lee YT (2010) Thermal analysis and characterization of the effect of substrate thinning on the performances of GaN-based light emitting diodes. Phys Status Solidi A 207:1497–1504CrossRefGoogle Scholar
  55. 55.
    Huang S, Wu H, Fan B et al (2010) A chip-level electro thermal coupled design model for high-power light-emitting diodes. J Appl Phys 107:054509CrossRefGoogle Scholar
  56. 56.
    Xu JL, Wang TH (2013) Efficiency droop improvement for InGaN-based light-emitting diodes with gradually increased in-composition across the active region. Phys E 52:8–13CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Beijing Key Laboratory of New and Renewable EnergyNorth China Electric Power UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade EnergyNorth China Electric Power UniversityBeijingChina

Personalised recommendations