Chinese Science Bulletin

, Volume 59, Issue 14, pp 1508–1518 | Cite as

Methane retrieval from Atmospheric Infrared Sounder using EOF-based regression algorithm and its validation

  • Ying Zhang
  • Xiaozhen Xiong
  • Jinhua Tao
  • Chao Yu
  • Mingmin Zou
  • Lin Su
  • Liangfu Chen
Article Atmospheric Science

Abstract

This paper presents a rapid regression algorithm for the retrieval of methane (CH4) profile from Atmospheric Infrared Sounder (AIRS) based on empirical orthogonal functions (EOF) and its validation. This algorithm was trained using the simulated radiance from an assemble of atmospheric profiles and can be utilized to derive the CH4 profile rapidly with the input of the AIRS cloud-clear radiance. Validation using hundreds of aircraft profiles demonstrates that the root mean square error (RMSE) is about 1.5 % in the AIRS sensitive region of 359–596 hPa, which is smaller than AIRS-V5 product (except in high latitudes). Comparison with the ground-based solar Fourier transform spectrometry observations showed that the RMSE of the retrieved CH4 total column amount is less than 3 %. This EOF-based regression method can be easily applied to other thermal infrared sounders for deriving CH4 and some other gases, and the derived profiles can be used as the first guess for further physical retrieval.

Keywords

EOF Methane AIRS Remote sensing Regression 

Notes

Acknowledgments

This work was supported by the Strategic Priority Research Program – Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (XDA05090101) and the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (Y1S02000CX). The authors gratefully thank Network for the Detection of Stratospheric Change to provide ground-based FTS measurements. The data of INTEX-A and B used in this publication were obtained from Aura Validation Data Center (AVDC) (http://avdc.gsfc.nasa.gov/index.php) and the aircraft measurements of INTEX-A were carried out by Donald R. Blake of Department of Chemistry, University of California, Irvine; and airborne CH4 data from INTEX-B and ARCTAS were provided by Glen Sachse and Glenn Diskin of NASA Langley. ARCTAS data were downloaded from (http://ftp-air.larc.nasa.gov/pub/ARCTAS/). The CH4 data of START08 aircraft measurements were carried out by Dale Hurst and Jim Elkins of NOAA/ESRL/GMD. The CH4 data of HIPPO aircraft measurements were carried out by S.C. Wofsy, HIPPO science team and cooperating modelers and satellite team.

References

  1. 1.
    Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: the physical science basis. Cambridge University Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth-Sci Rev 57:117–210CrossRefGoogle Scholar
  3. 3.
    Etheridge DM, Steele LP, Francey RJ et al (1998) Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. J Geophys Res 103:15979–15993CrossRefGoogle Scholar
  4. 4.
    Schuur EG, Abbott B (2011) Climate change: high risk of permafrost thaw. Nature 480:32–33CrossRefGoogle Scholar
  5. 5.
    Dlugokencky EJ, Nisbet EG, Fisher R et al (2011) Global atmospheric methane: budget, changes and dangers. Philos Trans R Soc A 369:2058–2072CrossRefGoogle Scholar
  6. 6.
    Koven CD, Ringeval B, Friedlingstein P et al (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci USA 108:14769–14774CrossRefGoogle Scholar
  7. 7.
    Dlugokencky EJ, Bruhwiler L, White JC et al (2009) Observational constraints on recent increases in the atmospheric CH4 burden. Geophys Res Lett 36:L18803CrossRefGoogle Scholar
  8. 8.
    Sussmann R, Forster F, Rettinger M et al (2012) Renewed methane increase for 5 years (2007–2011) observed by solar FTIR spectrometry. Atmos Chem Phys 12:4885–4891CrossRefGoogle Scholar
  9. 9.
    Hein R, Crutzen PJ, Heimann M (1997) An inverse modeling approach to investigate the global atmospheric methane cycle. Glob Biogeochem Cycles 11:43–76CrossRefGoogle Scholar
  10. 10.
    Zhuang Q, Melack JM, Zimov S et al (2009) Global methane emissions from wetlands, rice paddies, and lakes. Eos AGU 90:37–38CrossRefGoogle Scholar
  11. 11.
    Villani MG, Bergamaschi P, Krol M et al (2010) Inverse modeling of European CH4 emissions: sensitivity to the observational network. Atmos Chem Phys 10:1249–1267CrossRefGoogle Scholar
  12. 12.
    Houweling S, Hartmann W, Aben I et al (2005) Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols. Atmos Chem Phys 5:3003–3013CrossRefGoogle Scholar
  13. 13.
    Frankenberg C, Aben I, Bergamaschi P et al (2011) Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: trends and variability. J Geophys Res 116:D04302Google Scholar
  14. 14.
    Saitoh N, Hayashida S, Imasu R et al (2012) Comparisons between XCH4 from GOSAT shortwave and thermal infrared spectra and aircraft CH4 measurements over Guam. Sci Online Lett Atmos 8:145–149Google Scholar
  15. 15.
    Morino I, Uchino O, Inoue M et al (2011) Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmos Meas Tech 4:1061–1076CrossRefGoogle Scholar
  16. 16.
    Schneising O, Buchwitz M, Burrows JP et al (2009) Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite. Part 2: Methane. Atmos Chem Phys 9:443–465CrossRefGoogle Scholar
  17. 17.
    Meirink JF, Eskes HJ, Goede AH (2006) Sensitivity analysis of methane emissions derived from SCIAMACHY observations through inverse modelling. Atmos Chem Phys 6:1275–1292CrossRefGoogle Scholar
  18. 18.
    Clerbaux C, Hadji-Lazaro J, Turquety S et al (2003) Trace gas measurements from infrared satellite for chemistry and climate applications. Atmos Chem Phys 3:1495–1508CrossRefGoogle Scholar
  19. 19.
    Razavi A, Clerbaux C, Wespes C et al (2009) Characterization of methane retrievals from the IASI space-borne sounder. Atmos Chem Phys 9:7889–7899CrossRefGoogle Scholar
  20. 20.
    Kulawik SS, Worden J, Eldering A et al (2006) Implementation of cloud retrievals for Tropospheric Emission Spectrometer (TES) atmospheric retrievals: part 1. Description and characterization of errors on trace gas retrievals. J Geophys Res 111:1–13Google Scholar
  21. 21.
    Crevoisier C, Nobileau D, Fiore AM et al (2009) Tropospheric methane in the tropics -first year from IASI hyperspectral infrared observations. Atmos Chem Phys 9:6337–6350CrossRefGoogle Scholar
  22. 22.
    Wecht KJ, Jacob DJ, Wofsy SC et al (2012) Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources. Atmos Chem Phys 12:1823–1832CrossRefGoogle Scholar
  23. 23.
    Crevoisier C, Nobileau D, Armante R et al (2013) The 2007–2011 evolution of tropical methane in the mid-troposphere as seen from space by MetOp-A/IASI. Atmos Chem Phys 13:4279–4289CrossRefGoogle Scholar
  24. 24.
    Xiong X, Barnet C, Maddy ES et al (2013) Mid-upper tropospheric methane retrieval from IASI and its validation. Atmos Meas Tech 6:2255–2265CrossRefGoogle Scholar
  25. 25.
    Xiong X, Barnet C, Maddy ES et al (2008) Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS). J Geophys Res 113:1–14Google Scholar
  26. 26.
    Xiong X, Barnet C, Maddy ES et al (2010) Seven years’ observation of mid-upper tropospheric methane from Atmospheric Infrared Sounder. Remote Sens 2:2509–2530CrossRefGoogle Scholar
  27. 27.
    Xiong X, Barnet C, Maddy ES et al (2013) Detection of methane depletion associated with stratospheric intrusion by Atmospheric Infrared Sounder (AIRS). Geophys Res Lett 40:2455–2459CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Chen LF, Tao JH et al (2012) Retrieval of methane profiles from spaceborne hyperspectral infrared observations. J Remote Sens 16:232–247Google Scholar
  29. 29.
    Aumann HH, Chahine MT, Gautier C et al (2003) AIRS/AMSU/HSB on the Aqua Mission: design, science objectives, data products, and processing systems. IEEE Trans Geosci Remote Sens 41:253–264CrossRefGoogle Scholar
  30. 30.
    Zhang XY, Bai WG, Zhang P et al (2011) Spatiotemporal variations in mid-upper tropospheric methane over China from satellite observations. Chin Sci Bull 56:3321–3327CrossRefGoogle Scholar
  31. 31.
    Xiong X, Houweling S, Wei J et al (2009) Methane plume over south Asia during the monsoon season: satellite observation and model simulation. Atmos Chem Phys 9:783–794CrossRefGoogle Scholar
  32. 32.
    Schuck TJ, Brenninkmeijer CM, Baker AK et al (2010) Greenhouse gas relationships in the Indian summer monsoon plume measured by the CARIBIC passenger aircraft. Atmos Chem Phys 10:3965–3984CrossRefGoogle Scholar
  33. 33.
    Goldberg MD, Qu Y, McMillin LM et al (2003) AIRS near-real-time products and algorithms in support of operational numerical weather prediction. IEEE Trans Geosci Remote Sens 41:379–389CrossRefGoogle Scholar
  34. 34.
    Saunders R, Matricardi M, Geer A (2009) RTTOV9.1 Users Guide. Version 1.5Google Scholar
  35. 35.
    Wofsy SC (2011) HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philos Trans R Soc A 369:2073–2086CrossRefGoogle Scholar
  36. 36.
    Singh HB, Brune WH, Crawford JH et al (2006) Overview of the summer 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A). J Geophys Res 111:D24S01CrossRefGoogle Scholar
  37. 37.
    Singh HB, Brune WH, Crawford JH et al (2009) Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: spring 2006 INTEX-B campaign overview and first results. Atmos Chem Phys 9:2301–2318CrossRefGoogle Scholar
  38. 38.
    Pan LL, Bowman KP, Atlas EL et al (2010) The stratosphere–troposphere analyses of regional transport 2008 experiment. Bull Am Meteorol Soc 91:327–342CrossRefGoogle Scholar
  39. 39.
    Jacob DJ, Crawford JH, Maring H et al (2010) The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results. Atmos Chem Phys 10:5191–5212CrossRefGoogle Scholar
  40. 40.
    Sussmann R, Stremme W, Buchwitz M et al (2005) Validation of ENVISAT/SCIAMACHY columnar methane by solar FTIR spectrometry at the Ground-Truthing Station Zugspitze. Atmos Chem Phys 5:2419–2429CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ying Zhang
    • 1
  • Xiaozhen Xiong
    • 2
  • Jinhua Tao
    • 1
  • Chao Yu
    • 1
  • Mingmin Zou
    • 1
  • Lin Su
    • 1
  • Liangfu Chen
    • 1
  1. 1.State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital EarthChinese Academy of SciencesBeijingChina
  2. 2.NOAA Center for Satellite Applications and ResearchCollege ParkUSA

Personalised recommendations