Chinese Science Bulletin

, Volume 59, Issue 18, pp 2186–2190

Mesoporous carbon with large pores as anode for Na-ion batteries

Article Materials Science

Abstract

Sodium ion (Na+) batteries have attracted increased attention for energy storage owing to the natural abundance and low cost of sodium. Herein, we report the synthesis of mesoporous carbon with large pores as anode for Na-ion batteries. The mesoporous carbon was obtained by carbonization and dense packing of 50 nm resorcinol and formaldehyde spheres synthesized through an extension Stöber method. Our work demonstrates that replacement of lithium by sodium using large pore carbon as anode might offer an alternative route for rechargeable batteries.

Keywords

Mesoporous carbon Na-ion batteries Carbon spheres 

References

  1. 1.
    Slater MD, Kim D, Lee HE et al (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRefGoogle Scholar
  2. 2.
    Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  3. 3.
    Sun YK, Chen ZH, Noh HJ et al (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11:942–947CrossRefGoogle Scholar
  4. 4.
    Tang K, Fu LJ, White RJ et al (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRefGoogle Scholar
  5. 5.
    Wenzel S, Hara T, Janek J et al (2011) Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ Sci 4:3342–3345CrossRefGoogle Scholar
  6. 6.
    Cao YL, Xiao LF, Sushko ML et al (2013) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRefGoogle Scholar
  7. 7.
    Alcantara R, Lavela P, Ortiz GF et al (2005) Carbon microspheres obtained from resorcinol–formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid-State Lett 8:A222–A225CrossRefGoogle Scholar
  8. 8.
    Fang Y, Gu D, Zou Y et al (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 49:7987–7991CrossRefGoogle Scholar
  9. 9.
    Lu AH, Li WC, Hao GP et al (2010) Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew Chem Int Ed 49:1615–1618CrossRefGoogle Scholar
  10. 10.
    Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094CrossRefGoogle Scholar
  11. 11.
    Liang CD, Li ZJ, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717CrossRefGoogle Scholar
  12. 12.
    Liu J, Qiao SZ, Liu H et al (2011) Extension of the Stober method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951CrossRefGoogle Scholar
  13. 13.
    Lu AH, Hao GP, Sun Q (2011) Can carbon spheres be created through the Stober method? Angew Chem Int Ed 50:9023–9025CrossRefGoogle Scholar
  14. 14.
    Choma J, Jamiola D, Augustynek K et al (2012) New opportunities in Stober synthesis: preparation of microporous and mesoporous carbon spheres. J Mater Chem 22:12636–12642CrossRefGoogle Scholar
  15. 15.
    Li N, Zhang Q, Liu J et al (2013) Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem Commun 49:5135–5137CrossRefGoogle Scholar
  16. 16.
    Yang TY, Liu J, Zheng Y et al (2013) Facile fabrication of core–shell structured Ag@Carbon and mesoporous yolk–shell structured Ag@Carbon@Silica by an extended Stöber method. Chem Eur J 19:6942–6945CrossRefGoogle Scholar
  17. 17.
    Su FB, Poh CK, Chen JS et al (2011) Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 4:717–724CrossRefGoogle Scholar
  18. 18.
    Liu J, Yang TY, Wang DW et al (2013) A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat Commun 4:2798Google Scholar
  19. 19.
    Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126:462–463CrossRefGoogle Scholar
  20. 20.
    Tang J, Zhou XF, Zhao DY et al (2007) Hard-sphere packing and icosahedral assembly in the formation of mesoporous materials. J Am Chem Soc 129:9044–9048CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemical EngineeringCurtin UniversityPerthAustralia
  2. 2.ARC Centre of Excellence for Functional Nanomaterials, Australian Institute of Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia
  3. 3.Department of Chemistry and Forensic ScienceUniversity of Technology SydneySydneyAustralia

Personalised recommendations