Chinese Science Bulletin

, Volume 59, Issue 10, pp 950–955 | Cite as

Multistage interband cascade photovoltaic devices with a bandgap of 0.23 eV operating above room temperature

  • Hao Ye
  • Hossein Lotfi
  • Lu Li
  • Robert T. Hinkey
  • Rui Q. Yang
  • Lin Lei
  • Joel C. Keay
  • Matthew B. Johnson
  • Tetsuya D. Mıshıma
  • Michael B. Santos
Invited Article Condensed Matter Physics

Abstract

Interband cascade (IC) photovoltaic (PV) device structures, consisting of multiple discrete InAs/GaSb superlattice absorbers sandwiched between electron and hole barriers, were grown by molecular beam epitaxy. Details of the molecular beam epitaxy growth and material characterization of the structures are presented. The discrete absorber architecture enables certain advantages, such as high open-circuit voltage, high collection efficiency, high operating temperature, and smooth integration of cascade stages with different bandgaps. The two- and three-stage ICPV devices presented in this article operate at room temperature with substantial open-circuit voltages at a cutoff wavelength of 5.3 μm (corresponding to a bandgap of 0.23 eV), the longest ever reported for room temperature PV devices. The device characteristics indicate a high level of current matching and demonstrate the advantages of the interband cascade approach in thermophotovoltaic cell design.

Keywords

InAs/GaSb superlattice Thermophotovoltaic Interband cascade devices 

Notes

Acknowledgments

The authors are grateful to Yuchao Jiang, Lihua Zhao, Chao Niu, and Ernest S. Sanchez for technical assistance. This study was supported in part by the DoE EPSCoR program (DE-SC0004523) and C-SPIN, the Oklahoma/Arkansas MRSEC (DMR-0520550).

References

  1. 1.
    Wilt D, Chubb D, Wolford D et al (2007) Thermophotovoltaics for space power applications. In: Proceedings of seventh world conference on thermophotovoltaic generation of electricity, vol 890. American Institute of Physics, College Park, pp 335–345Google Scholar
  2. 2.
    Teofilo VL, Choong P, Chang J et al (2008) Thermophotovoltaic energy conversion for space. J Phys Chem C 112:7841–7845CrossRefGoogle Scholar
  3. 3.
    Datas A, Algora C (2013) Global optimization of solar thermophotovoltaic systems. Prog Photovolt Res Appl 21:1040–1055Google Scholar
  4. 4.
    Chan WR, Bermel P, Pilawa-Podgurski RCN et al (2013) Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics. Proc Natl Acad Sci USA 110:5309–5314CrossRefGoogle Scholar
  5. 5.
    Coutts TJ, Ward JS (1999) Thermophotovoltaic and photovoltaic conversion at high-flux densities. IEEE Trans Electron Dev 46:2145–2153CrossRefGoogle Scholar
  6. 6.
    Mauk MG, Andreev VM (2003) Gasb-related materials for TPV cells. Semicond Sci Technol 18:S191–S201CrossRefGoogle Scholar
  7. 7.
    Zenker M, Heinzel A, Stollwerck G et al (2001) Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells. IEEE Trans Electron Dev 48:367–376CrossRefGoogle Scholar
  8. 8.
    Su N, Fay P, Sinharoy S et al (2007) Characterization and modeling of InGaAs/InAsP thermophotovoltaic converters under high illumination intensities. J Appl Phys 101:064511CrossRefGoogle Scholar
  9. 9.
    Yang RQ, Li L, Zhao L et al (2013) Recent progress in development of InAs-based interband cascade lasers. In: Belyanin AA, Smowton PM, eds Novel in-plane semiconductor lasers XII, Proc SPIE, vol 8640. SPIE Photonics West, San Francisco, p 86400qCrossRefGoogle Scholar
  10. 10.
    Yang RQ (2013) Interband cascade (IC) lasers. In: Baranov A, Tournie E (eds) Semiconductor lasers: fundamentals and applications. Woodhead Publishing Limited, CambridgeGoogle Scholar
  11. 11.
    Yang RQ, Tian Z, Klem JF et al (2010) Interband cascade photovoltaic devices. Appl Phys Lett 96:063504CrossRefGoogle Scholar
  12. 12.
    Lotfi H, Hinkey RT, Li L et al (2013) Narrow-bandgap photovoltaic devices operating at room temperature and above with high open-circuit voltage. Appl Phys Lett 102:211103CrossRefGoogle Scholar
  13. 13.
    Hinkey RT, Tian Z-B, Rassel SMSS et al (2013) Interband cascade photovoltaic devices for conversion of mid-IR radiation. IEEE J Photovolt 3:745–752CrossRefGoogle Scholar
  14. 14.
    Bracker AS, Yang MJ, Bennett BR et al (2000) Surface reconstruction phase diagrams for InAs, AlSb, and GaSb. J Cryst Growth 220:384–392CrossRefGoogle Scholar
  15. 15.
    Tian Z, Hinkey RT, Yang RQ et al (2012) Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers. J Appl Phys 111:024510CrossRefGoogle Scholar
  16. 16.
    Keay JC, Li L, Brunski DB et al (2011) Suppression of slip-line defect formation in gasb substrates during thermal desorption of oxide layers. In: Poster session presented at 28th North American molecular beam epitaxy, San DiegoGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hao Ye
    • 1
  • Hossein Lotfi
    • 1
  • Lu Li
    • 1
  • Robert T. Hinkey
    • 1
    • 2
  • Rui Q. Yang
    • 1
  • Lin Lei
    • 1
    • 2
  • Joel C. Keay
    • 2
  • Matthew B. Johnson
    • 2
  • Tetsuya D. Mıshıma
    • 2
  • Michael B. Santos
    • 2
  1. 1.School of Electrical and Computer EngineeringUniversity of OklahomaNormanUSA
  2. 2.Homer L. Dodge Department of Physics and AstronomyUniversity of OklahomaNormanUSA

Personalised recommendations