Chinese Science Bulletin

, Volume 59, Issue 11, pp 1159–1166 | Cite as

Validation of AMSU-A measurements from two different calibrations in the lower stratosphere using COSMIC radio occultation data

Article Atmospheric Science

Abstract

GPS radio occultation data from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission were used to validate the measurements of the advanced microwave sounding unit-A (AMSU-A) in the lower stratosphere from different satellites. AMSU-A observations from two different calibrations—the pre-launch operational and post-launch simultaneous nadir overpass (SNO) calibrations—were compared to microwave brightness temperatures (Tb) simulated from COSMIC data. Observations from three satellites (NOAA-15, -16, and -18) were used in the comparison. The results showed that AMSU-A Tb measurements from both calibrations and from all three NOAA satellites were underestimated in the lower stratosphere, and that the biases were larger in polar winters, especially over the southern high latitudes. In comparison to operational calibration, the SNO-calibrated AMSU-A data produced much smaller biases relative to the COSMIC data. The improvement due to SNO calibration was quantified by a Ratio index, which measured the bias changes from operational to SNO calibrations relative to the biases between the operational-calibrated AMSU-A data and the COSMIC data. The Ratio values were 70 % for NOAA-15 and >80 % for NOAA-18 and -16, indicating that the SNO calibration method significantly reduced AMSU-A biases and effectively improved AMSU-A data quality.

Keywords

AMSU COSMIC Validation SNO calibration Brightness temperature 

References

  1. 1.
    Spencer RW, Christy JR (1992) Precision and radiosonde validation of satellite grid point temperature anomalies. Part II: Tropospheric retrieval and trends during 1979–1990. J Clim 5:858–866CrossRefGoogle Scholar
  2. 2.
    Christy JR, Spencer RW, Norris WB et al (2003) Error estimates of version 5 of MSU–AMSU bulk atmospheric temperatures. J Atmos Ocean Technol 20:613–629CrossRefGoogle Scholar
  3. 3.
    Mears CA, Schabel MC, Wentz FJ (2003) A reanalysis of the MSU channel 2 tropospheric temperature record. J Clim 16:3650–3664CrossRefGoogle Scholar
  4. 4.
    Vinnikov KY, Grody NC (2003) Global warming trend of mean tropospheric temperature observed by satellites. Science 302:269–272CrossRefGoogle Scholar
  5. 5.
    Zou CZ, Gao M, Goldberg M (2009) Error structure and atmospheric temperature trend in observations from the microwave sounding unit. J Clim 22:1661–1681CrossRefGoogle Scholar
  6. 6.
    Zou CZ, Wang WH (2010) Stability of the MSU-derived atmospheric temperature trend. J Atmos Ocean Technol 27:19601971CrossRefGoogle Scholar
  7. 7.
    Dee D, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q J R Meteorol Soc 135:1830–1841. doi:10.1002/qj.493 CrossRefGoogle Scholar
  8. 8.
    Saha S, Moorthi S, Pan HL et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi:10.1175/2010BAMS3001.1 CrossRefGoogle Scholar
  9. 9.
    Zou CZ, Goldberg M, Cheng Z et al (2006) Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J Geophys Res 111:D19114. doi:10.1029/2005JD006798 CrossRefGoogle Scholar
  10. 10.
    Rienecker MM, Suarez MJ, Gelaro R et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  11. 11.
    Mo T (1995) A study of the microwave sounding unit on the NOAA-12 satellite. IEEE Trans Geosci Remote Sens 33:1141–1152CrossRefGoogle Scholar
  12. 12.
    Mo T, Goldberg MD, Crosby DS et al (2001) Recalibration of the NOAA microwave sounding unit. J Geophys Res 106:10145–10150CrossRefGoogle Scholar
  13. 13.
    Cao C, Weinreb M, Xu H (2004) Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J Atmos Ocean Technol 21:537–542CrossRefGoogle Scholar
  14. 14.
    Zou CZ, Wang W (2011) Intersatellite calibration of AMSU-A observations for weather and climate applications. J Geophys Res 116:D23113. doi:10.1029/2011JD016205 CrossRefGoogle Scholar
  15. 15.
    Kuo YH, Schreiner WS, Wang J et al (2005) Comparison of GPS radio occultation soundings with radiosondes. Geophys Res Lett 32:L05817. doi:10.1029/2004GL021443 Google Scholar
  16. 16.
    Hajj GA, Ao CO, Iijima BA et al (2004) CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res 109:D06109. doi:10.1029/2003JD003909 Google Scholar
  17. 17.
    Steiner AK, Kirchengast G, Borsche M et al (2007) A multi-year comparison of lower stratospheric temperatures from CHAMP radio occultation data with MSU/AMSU records. J Geophys Res 112:D22110. doi:10.1029/2006JD008283 CrossRefGoogle Scholar
  18. 18.
    Steiner AK, Kirchengast G, Borsche M et al (2009) Lower stratospheric temperatures from CHAMP RO compared to MSU/AMSU records: an analysis of error sources. In: Steiner AK, Pirscher B, Foelsche U et al (eds) New horizons in occultation research: Studies in atmosphere and climate. Springer, Berlin. doi:10.1007/978-3-642-00321-9-18 CrossRefGoogle Scholar
  19. 19.
    Ho SP, Kuo YH, Zeng Z et al (2007) A comparison of lower stratosphere temperature from microwave measurements with CHAMP GPS RO data. Geophys Res Lett 34:L15701. doi:10.1029/2007GL030202 CrossRefGoogle Scholar
  20. 20.
    Anthes RA, Bernhardt PA, Chen Y et al (2008) The COSMIC/FORMOSAT-3 mission early results. Bull Am Meteorol Soc 89:313–333. doi:10.1175/BAMS-89-3-313 CrossRefGoogle Scholar
  21. 21.
    Ho SP, Kuo YH, Schreiner W et al (2010) Using SI traceable global positioning system radio occultation measurements for climate monitoring. In: state of the climate in 2009. Bull Am Meteorol Sci 91:S36–S37Google Scholar
  22. 22.
    Ho SP, Goldberg M, Kuo YH et al (2009) Calibration of temperature in the lower stratosphere from microwave measurements using COSMIC radio occultation data: preliminary results. Terr Atmos Ocean Sci 20:87–100. doi:10.3319/TAO.2007.12.06.01(F3C) CrossRefGoogle Scholar
  23. 23.
    Ho SP, He WY, Kuo YH (2009) Construction of consistent temperature records in the lower stratosphere using global positioning system radio occultation data and microwave sounding measurements. In: Steiner A, Pirscher B, Foelsche U et al (eds) New horizons in occultation research. Springer, Berlin, pp 207–217. doi:10.1007/978-3-642-00321-9_17 CrossRefGoogle Scholar
  24. 24.
    He WY, Chen HB (2009) Validation of AMSU measurements in lower stratosphere using COSMIC radio occultation data: preliminary results. Chin J Geophys 52:2951–2957. doi:10.3969/j.issn.0001-5733.2009.12.003 (in Chinese)Google Scholar
  25. 25.
    Kuo YH, Wee TK, Sokolovskiy S et al (2004) Inversion and error estimation of GPS radio occultation data. J Meteorol Soc Jpn 82:507–531. doi:10.2151/jmsj.2004.507 CrossRefGoogle Scholar
  26. 26.
    Ware R, Exner M, Feng D et al (1997) GPS sounding of the atmosphere from low Earth orbit: preliminary results. Bull Am Meteorol Soc 77:19–40. doi:10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2 CrossRefGoogle Scholar
  27. 27.
    Woolf H, Delst PV, Zhang W (1999) NOAA-15 HIRS/3 and AMSU transmittance model validation. In: Technical proceedings of the international ATOVS study conference, 10th, Boulder, CO, Bureau of Meteorology Research Centre, Melbourne, Australia, pp. 564–573Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.LAGEO, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.NOAA/NESDIS/Center for Satellite Applications and ResearchCamp SpringsUSA

Personalised recommendations