Chinese Science Bulletin

, Volume 58, Issue 23, pp 2846–2854 | Cite as

Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus

  • Xiao Hu
  • YongJie Zhang
  • GuoHua Xiao
  • Peng Zheng
  • YongLiang Xia
  • XingYu Zhang
  • Raymond J. St Leger
  • XingZhong Liu
  • ChengShu Wang
Open Access
Article Genetics


The caterpillar fungus Ophiocordyceps sinensis (best known as Cordyceps sinensis) mummifies ghost moth larvae exclusively in Tibetan Plateau alpine ecosystems. Touted as “Himalayan Viagra”, the fungus is highly prized due to its medical benefits and dwindling supplies. Attempts to culture the sexual fruiting-body have failed and the huge market demand has led to severe devastation of local ecosystems and to the fungus heading towards extinction. By genome sequencing, we establish that unlike related insect pathogens O. sinensis contains two compatible mating-type genes in its genome and is self-fertile, i.e. homothallic. However, sexual processes are only initiated under native environmental conditions. O. sinensis resembles biotrophic plant pathogens in having a genome shaped by retrotransposon-driven expansions. The resulting changes in gene content suggest that O. sinensis has a biphasic pathogenic mechanism beginning with stealth pathogenesis in early host instars. O. sinensis is the first psychrophilic fungus sequenced and is adapted to extreme cold with putative antifreeze proteins and mechanisms for increasing lipid accumulation and fatty acid unsaturation. We hypothesize that for the inbreeding O. sinensis the massive proliferation of retrotransposons provides a tradeoff between the advantages of increased genetic variation independent of sexual recombination and deletion of genes dispensable for its specialized pathogenic lifestyle.


Ophiocordyceps sinensis genome expansion homothallism biotrophic parasitism psychrophile 

Supplementary material

11434_2013_5929_MOESM1_ESM.pdf (729 kb)
Supplementary material, approximately 728 KB.


  1. 1.
    Zhang Y J, Li E W, Wang C S, et al. Ophiocordyceps sinensis, the flagship fungus of China: Terminology, life strategy and ecology. Mycology, 2012, 3: 2–10Google Scholar
  2. 2.
    Winkler D. Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of the rural economy in Tibet AR. Eco Bot, 2008, 62: 291–306CrossRefGoogle Scholar
  3. 3.
    Dong C H, Yao Y J. Nutritional requirements of mycelial growth of Cordyceps sinensis in submerged culture. J Appl Microbiol, 2005, 99: 483–492CrossRefGoogle Scholar
  4. 4.
    Paterson R R. Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry, 2008, 69: 1469–1495CrossRefGoogle Scholar
  5. 5.
    Mycology S R. Last stand for the body snatcher of the Himalayas? Science, 2008, 322: 1182CrossRefGoogle Scholar
  6. 6.
    Holliday J, Cleaver M. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes). A review. Int J Med Mushrooms, 2008, 10: 219–234CrossRefGoogle Scholar
  7. 7.
    Stone R. Bhutan. Improbable partners aim to bring biotechnology to a Himalayan kingdom. Science, 2010, 327: 940–941CrossRefGoogle Scholar
  8. 8.
    Cannon P F, Nigel L, Hywel-Jones, et al. Steps towards sustainable harvest of Ophiocordyceps sinensis in Bhutan. Biodivers Conserv, 2009, 18: 2263–2281CrossRefGoogle Scholar
  9. 9.
    Li J F, Zou Z W, Liu X, et al. Biology of Thitarodes pui (Lepidoptera, Hepialidae) a host species of Ophiocordyceps sinensis. J Environ Entomol, 2011, 33: 195–202Google Scholar
  10. 10.
    Zheng P, Xia Y L, Zhang S W, et al. Genetics of Cordyceps and related fungi. Appl Microbiol Biotechnol, 2013, 97: 2797–2804CrossRefGoogle Scholar
  11. 11.
    Ni M, Feretzaki M, Sun S, et al. Sex in fungi. Annu Rev Genet, 2011, 45: 405–430CrossRefGoogle Scholar
  12. 12.
    Zhang S, Zhang Y J, Liu X Z, et al. Cloning and analysis of the MAT1-2-1 gene from the traditional Chinese medicinal fungus Ophiocordyceps sinensis. Fungal Biol, 2011, 115: 708–714CrossRefGoogle Scholar
  13. 13.
    Duan Z B, Chen Y X, Huang W, et al. Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Autophagy, 2013, 9: 538–549CrossRefGoogle Scholar
  14. 14.
    Li R, Zhu H, Ruan J, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res, 2010, 20: 265–272CrossRefGoogle Scholar
  15. 15.
    Parra G, Bradnam K, Korf I. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics, 2007, 23: 1061–1067CrossRefGoogle Scholar
  16. 16.
    Zhang Z, Cariero N, Zheng D, et al. PseudoPipe: An automated pseudogene identification pipeline. Bioinformatics, 2006, 22: 1437–1439CrossRefGoogle Scholar
  17. 17.
    Zheng P, Xia Y L, Xiong C H, et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued Traditional Chinese Medicine. Genome Biol, 2011, 12: R116CrossRefGoogle Scholar
  18. 18.
    Xiao G H, Ying S H, Zheng P, et al. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep, 2012, 2: 483Google Scholar
  19. 19.
    Gao Q, Jin K, Ying S H, et al. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet, 2011, 7: e1001264CrossRefGoogle Scholar
  20. 20.
    Dyer P S, O’Gorman C M. Sexual development and cryptic sexuality in fungi: Insights from Aspergillus species. FEMS Microbiol Rev, 2012, 36: 165–192CrossRefGoogle Scholar
  21. 21.
    Medema M H, Blin K, Cimermancic P, et al. AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res, 2011, 39: W339–W346CrossRefGoogle Scholar
  22. 22.
    Fedorova N D, Moktali V, Medema M H. Bioinformatics approaches and software for detection of secondary metabolic gene clusters. Methods Mol Biol, 2012, 944: 23–45Google Scholar
  23. 23.
    Venketesh S, Dayananda C. Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotechnol, 2008, 28: 57–82CrossRefGoogle Scholar
  24. 24.
    Fang W G, St. Leger R J. RNA binding proteins mediate the ability of a fungus to adapt to the cold. Environ Microbiol, 2010, 12: 810–820CrossRefGoogle Scholar
  25. 25.
    Zhang Y J, Xu L L, Zhang S, et al. Genetic diversity of Ophiocordyceps sinensis, a medicinal fungus endemic to the Tibetan Plateau: Implications for its evolution and conservation. BMC Evol Biol, 9: 290Google Scholar
  26. 26.
    Floudas D, Binder M, Riley R, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 2012, 336: 1715–1719CrossRefGoogle Scholar
  27. 27.
    Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739CrossRefGoogle Scholar
  28. 28.
    Spanu P D, Abbott J C, Amselem J, et al. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science, 2010, 330: 1543–1546CrossRefGoogle Scholar
  29. 29.
    Duplessis S, Cuomo C A, Lin Y C, et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA, 2011, 108: 9166–9171CrossRefGoogle Scholar
  30. 30.
    Martin F, Kohlrt A, Murat C, et al. Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature, 2010, 464: 1033–1038CrossRefGoogle Scholar
  31. 31.
    Spanu P D. The genomics of obligate (and nonobligate) biotrophs. Annu Rev Phytopathol, 2012, 50: 91–109CrossRefGoogle Scholar
  32. 32.
    Ma L J, van de Does H C, Borkovivh K A, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464: 363–373CrossRefGoogle Scholar
  33. 33.
    Galagan J E, Calvo S E, Cuomo C, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005, 438: 1105–1115CrossRefGoogle Scholar
  34. 34.
    Nygren K, Strandberg R, Wallberg A, et al. A comprehensive phylogeny of Neurospora reveals a link between reproductive mode and molecular evolution in fungi. Mol Phylogenet Evol, 2011, 59: 649–663CrossRefGoogle Scholar
  35. 35.
    Glass N L, Dementhon K. Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol, 2006, 9: 553–558CrossRefGoogle Scholar
  36. 36.
    Wang C S, St. Leger R J. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci USA, 2006, 103: 6647–6652CrossRefGoogle Scholar
  37. 37.
    St. Leger R J, Wang C S. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Appl Microbiol Biotechnol, 2010, 85: 901–907CrossRefGoogle Scholar
  38. 38.
    St Leger R J, Joshi L, Bidochka M J, et al. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci USA, 1996, 93: 6349–6354CrossRefGoogle Scholar
  39. 39.
    Rappleye C A, Goldman W E. Fungal stealth technology. Trends Immunol, 2008, 29: 18–24CrossRefGoogle Scholar
  40. 40.
    Wang B, Kang Q J, Lu Y Z, et al. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc Natl Acad Sci USA, 2012, 109: 1287–1292CrossRefGoogle Scholar
  41. 41.
    Amaretti A, Raimondi S, Sala M, et al. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Fact, 2010, 9: 73Google Scholar
  42. 42.
    D’Amico S, Collins T, Marx J C, et al. Psychrophilic microorganisms: Challenges for life. EMBO Rep, 2006, 7: 385–389CrossRefGoogle Scholar
  43. 43.
    Hofrichter M, Ullrich R, Pecyna M J, et al. New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol, 2010, 87: 871–897CrossRefGoogle Scholar
  44. 44.
    Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: Why bigger can be better. Nat Rev Microbiol, 2012, 10: 417–430Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Xiao Hu
    • 1
  • YongJie Zhang
    • 2
  • GuoHua Xiao
    • 1
  • Peng Zheng
    • 1
  • YongLiang Xia
    • 1
  • XingYu Zhang
    • 3
  • Raymond J. St Leger
    • 4
  • XingZhong Liu
    • 3
  • ChengShu Wang
    • 1
  1. 1.Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  2. 2.School of Life SciencesShanxi UniversityTaiyuanChina
  3. 3.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  4. 4.Department of EntomologyUniversity of MarylandCollege ParkUSA

Personalised recommendations