Chinese Science Bulletin

, Volume 58, Issue 31, pp 3738–3746 | Cite as

Molecular phylogeny of European and African Barbus and their West Asian relatives in the Cyprininae (Teleostei: Cypriniformes) and orogenesis of the Qinghai-Tibetan Plateau

  • Jing Wang
  • XiaoYun Wu
  • ZiMing Chen
  • ZhaoPing Yue
  • Wei Ma
  • ShanYuan Chen
  • Heng Xiao
  • Robert W. Murphy
  • YaPing Zhang
  • RuiGuang Zan
  • Jing Luo
Open Access
Article Ecology

Abstract

The phylogenetic relationships of European and African Barbus and their West Asian relatives in Cyprininae remain largely unresolved. Consequently, little is known about the drivers of their evolution, including the possible association of uplifting of the Qinghai-Tibetan Plateau (QTP) with the early divergence of the subfamily. We use complete sequence data of the mitochondrial DNA gene encoding the protein cytochrome b (Cytb) to hypothesize the phylogeny of 85 species belonging to 47 genera in the Cyprininae plus 6 species from the Leuciscinae. We employ 6 other species from Cypriniformes as outgroup taxa and estimate divergence times. Our results indicate that European Barbus sensu stricto lineage including Aulopyge shares a common ancestor with specialized and highly specialized schizothoracins and the genera Cyprinion and Scaphiodonichtys. The common ancestor appears to have originated in the Qinghai-Tibetan Plateau (QTP) region about 19.4–17.8 Ma. Barbus sensu stricto lineage appears to have originated about 16.6–15.5 Ma. Small to medium sized African Barbus sensu lato appear to have had an Oriental origin about 19.1–15.3 Ma and are closely related to Asian Puntius. West Asian Carasobarbus lineage including large African Barbus sensu lato might have originated about 9.94 Ma, also in Oriental Realm and has a close relationship to Asian Neolissochilus and Tor. The large-sized Barbus sensu lato appear to have diverged from Carasobarbus about 7.7 Ma. Finally, the Cyprininae appear to have radiated rapidly into nine lineages and many sublineages from about 27.8 to 17.8 Ma, close to the time of the second-stage tectonic movements of the QTP. Our analyses provide evidence that the uplifting of the QTP drove early diversification of the Cyprininae. Our extensive sampling of species involving all of the important areas results in clear evolutionary scenario for the Cyprininae.

Keywords

Barbus cyprininae molecular clock Qinghai-Tibetan Plateau 

References

  1. 1.
    Cavender T M, Coburn M M. Phylogenetic relationships of North American Cyprinidae. In: Mayden R L, ed. Systematics, Historical Ecology and North American Freshwater Fishes. Palo Alto, CA: Stanford University Press, 1992. 293–327Google Scholar
  2. 2.
    Chen X L, Yue P Q, Lin R D. Major groups within the family Cyprinidae and their phylogenetic relationships (in Chinese). Acta Zoo Sin, 1984, 9: 424–440Google Scholar
  3. 3.
    Chen X Y. Studies on the phylogenetic relationships of Chinese leuciscine fishes (pieces: Cypriniformes) (in Chinese). Acta Zoo Sin, 1987, 12: 427–438Google Scholar
  4. 4.
    Chen Y Y. General Introduction to Cyprinidae. In Fauna Sinica, Osteichthyes, Cypriniformes (II) (in Chinese). Beijing: Science Press, 1998. 1–18Google Scholar
  5. 5.
    Agnese J F, Berrebi P, Leveque C, et al. Two lineages, diploid and tetraploid, demonstrated in African species Barbus (Osteichthyes, Cyprinidae). Aquat Living Resour, 1990, 3: 305–311CrossRefGoogle Scholar
  6. 6.
    Banarescu P, Coad B W. Cyprinids of Eurasia. In: Winfield I J, Nelson J S, eds. Cyprinid Fishtematics: Systematic, Biology and Exploitation. London: Chapman and Hall, 1991. 127–15Google Scholar
  7. 7.
    Rainboth W J. Cyprinids of South East Asia. In: Winfield I J, Nelson J S, eds. Cyprinid Fishes: Systematics, Biology and Exploitation. London: Chapman and Hall, 1991. 156–210CrossRefGoogle Scholar
  8. 8.
    Yue P Q. Fauna Sinica, Osteichthyes, Cypriniformes (III) (in Chinese). Beijing: Science Press, 2000Google Scholar
  9. 9.
    Tsigenopoulos C S, Berreb P. Molecular phylogenetics of north Mediterranean freshwater barbs (genus Barbus: Cyprinidae) inferred from cytochrome b sequences: Biogeographic and systematic implications. Mol Phylogen Evol, 2000, 14: 165–179CrossRefGoogle Scholar
  10. 10.
    Zardoya R, Doadrio I. Molecular evidence on the evolutionary and biogeographical pattern of European Cyprinids. J Mol Evol, 1999, 49: 227–237CrossRefGoogle Scholar
  11. 11.
    Machordom A, Doadrio I. Evidence of a Cenozoic Betic-Kabilian connection based on freshwater fish phylogeography (Luciobarbus, Cyprinidae). Mol Phylogen Evol, 2001, 18: 252–263CrossRefGoogle Scholar
  12. 12.
    Callejas C C, Ochando M D. Phylogenetic relationships among Spanish Barbus species (Pisces: Cyprinidae) shown by RAPD markers. Heredity, 2002, 89: 36–43CrossRefGoogle Scholar
  13. 13.
    Durand J D, Tsigenopoulos C S, Unlue E, et al. Phylogeny and biogeography of the family Cyprinidae in the Middle East inferred from Cytochrome b DNA evolutionary significance of this region. Mol Phylogen Evol, 2002, 22: 91–100CrossRefGoogle Scholar
  14. 14.
    Skelton P H, Tweddle D, Jackson P B N. Cyprinids of African. In: Winfield I J, Nelson J S, eds. Cyprinid Fishes: Systematics, Biology and Exploitation. London: Chapman and Hall, 1991. 211–219CrossRefGoogle Scholar
  15. 15.
    Howes G J. Systematics and biogeography: An overview. In: Winfield I J, Nelson T S, eds. Cyprinid fishes. Systematics, Biology and Exploitation. London: Chapman and Hall, 1991. 1–33CrossRefGoogle Scholar
  16. 16.
    Briolay J, Galtier N, Brito R M, et al. Molecular phylogeny of Cyprinidae inferred from cytochrome b DNA sequence. Mol Phylogen Evol, 1998, 9: 100–108CrossRefGoogle Scholar
  17. 17.
    Gilles A, Lecointre G, Faure E, et al. Mitochondrial phylogeny of the European Cyprinides: Implications for their systematics, reticulate evolution, and colonization time. Mol Phylogen Evol, 1998, 10: 132–143CrossRefGoogle Scholar
  18. 18.
    Gille A, Lecointre G, Miquelis A, et al. Partial combination applied to phylogeny of European Cyprinids using the mitochondrial control region. Mol Phylogen Evol, 2001, 19: 22–33CrossRefGoogle Scholar
  19. 19.
    Zardoya R, Economidis P S, Doadrio I. Phylogenetic relationships of the Greek Cyprinidae: Molecular evidence for at least two origins of the Greek Cyprinid fauna. Mol Phylogen Evol, 1999, 13: 122–131CrossRefGoogle Scholar
  20. 20.
    Cunha C, Mesquita N, Dowling T E, et al. Phylogenetic relationships of Eurasian and American cyprinids using cytochrome b sequences. J Fish Biol, 2002, 61: 929–944CrossRefGoogle Scholar
  21. 21.
    Liu H Z, Chen Y Y. Phylogeny of the East Asian cyprinids inferred from sequences of the mitochondrial DNA control region. Can J Zool, 2003, 81: 1938–1946CrossRefGoogle Scholar
  22. 22.
    He S P, Liu H Z, Chen Y Y, et al. Molecular phylogenetic relationships of Eastern Asian Cyprinidae (Pisces: Cypriniformes) inferred from cytochrome b sequences. Sci China Life Sci, 2004, 47: 130–138CrossRefGoogle Scholar
  23. 23.
    Saitoh K, Sado T, Mayden R L, et al. Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): The first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences. J Mol Evol, 2006, 63: 826–841CrossRefGoogle Scholar
  24. 24.
    Saitoh K, Sado T, Doosey M H, et al. Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of Cypriniformes fishes (Actinopterygii: Ostariophysi). Zool J Linnean Soc, 2011, 161: 633–662CrossRefGoogle Scholar
  25. 25.
    Kong X H, Wang X Z, Gan X N, et al. The c-myc coding DNA sequences of Cyprinids (Teleostei: Cypriniformes): Implication for phylogeny. Chin Sc Bull, 2007, 52: 1491–1500CrossRefGoogle Scholar
  26. 26.
    Wang X Z, Li J B, He S P. Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Mol Phylogen Evol, 2007, 42: 157–170CrossRefGoogle Scholar
  27. 27.
    Li J B, Wang X Z, Kong X H, et al. Variation pattern of the mitochondrial 16srRNA gene with secondary structure constraints and their application to phylogeny of cyprinine fishes (Teleostei: Cypriniformes). Mol Phylogen Evol, 2008, 47: 472–478CrossRefGoogle Scholar
  28. 28.
    Mayden R L, Chen W J, Bart H L, et al. Reconstructing the phylogenetic relationships of the earth’s most diverse clade of freshwater fishes-order Cypriniformes (Actinopterygii: Ostariophysi): A case study using multiple nuclear loci and the mitochondrial genome. Mol Phylogen Evol, 2009, 51: 500–514CrossRefGoogle Scholar
  29. 29.
    He S P, Mayden R L, Wang X Z, et al. Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: Further evidence from a nuclear gene of the systematic chaos in the family. Mol Phylogen Evol, 2008, 46: 818–829CrossRefGoogle Scholar
  30. 30.
    Mayden R L, Chen W J, Bart H L, et al. Reconstructing the phylogenetic relationships of the earth’s most diverse clade of freshwater fishes-order Cypriniformes (Actinopterygii: Ostariophysi): A case study using multiple nuclear loci and the mitochondrial genome. MolPhylogen Evol, 2009, 51: 500–514CrossRefGoogle Scholar
  31. 31.
    Chen W J, Mayden R L. Molecular systematics of the Cyprinoidea (Teleostei: Cypriniformes), the world’s largest clade of freshwater fishes: Further evidence from six nuclear genes. Mol Phylogen Evol, 2009, 52: 544–549CrossRefGoogle Scholar
  32. 32.
    Zhang X Y, Yue B S, Jiang W X, et al. The complete mitochondrial genome of rock carp Procypris rabaudi (Cypriniformes: Cyprinidae) and phylogenetic implications. Mol Bio Rep, 2009, 36: 981–991CrossRefGoogle Scholar
  33. 33.
    Wu X Y, Wang L, Chen S Y, et al. The complete mitochondrial genomes of two species from Sinocyclocheilus (Cypriniformes: Cyprinidae) and a phylogenetic analysis within Cyprininae. Mol Bio Rep, 2010, 37: 2163–2171CrossRefGoogle Scholar
  34. 34.
    Yang L, Mayden R L, Sado T, et al. Molecular phylogeny of the fishes traditionally referred to Cyprinini sensu stricto (Teleostei: Cypriniformes). Zool Scr, 2010, 39: 527–550CrossRefGoogle Scholar
  35. 35.
    Dowling T E, Tibbets C A, Minckley W L, et al. Evolutionary Relationships of the Plagopterins (Teleostei: Cyprinidae) from Cytochrome b sequences. Copeia, 2002, 3: 665–678CrossRefGoogle Scholar
  36. 36.
    He D K, Chen Y F, Chen Y Y, et al. Molecular phylogeny of the specialized Schizothoracine fishes (Teleostei: Cyprinidae), with their implications for the uplift of the Qinghai-Tibetan Plateau. Chin Sci Bull, 2004, 49: 39–48Google Scholar
  37. 37.
    He D K, Chen Y F. Molecular phylogeny and biogeography of the highly specialized grade Shizothoracine fishes (Teleostei: Cyprinidae) inferred from cytochrome b sequences. Chin Sci Bull, 2007, 52: 777–788CrossRefGoogle Scholar
  38. 38.
    Schonhuth S, Doadrio I, Dominguez-Dominguez O, et al. Molecular evolution of southern North American Cyprinidae (Actinopterygii), with the description of the new genus Tampichthys from central Mexico. Mol Phylogen Evol, 2008, 47: 729–756CrossRefGoogle Scholar
  39. 39.
    Miya N, Nishida M. Use of mitogenomic information in teleostean molecular phylogenetics: A tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogen Evol, 2000, 17: 437–455CrossRefGoogle Scholar
  40. 40.
    Xiao H, Chen S Y, Liu Z M, et al. Molecular phylogeny of Sinocyclochcilus (Cypriniformes: Cyprinidae) inferred from mitochondria DNA sequences. Mol Phylogen Evol, 2005, 36: 67–77CrossRefGoogle Scholar
  41. 41.
    Xiao W H, Zhang Y P, Liu H. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): Taxonomy, biogeography, and coevolution of a special group restriccted in East Asia. Mol Phylogen Evol, 2001, 18: 163–173CrossRefGoogle Scholar
  42. 42.
    Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599CrossRefGoogle Scholar
  43. 43.
    Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 2006, 22: 2688–2690CrossRefGoogle Scholar
  44. 44.
    Huelsenbeck J P, Ronquist F. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 2001, 17: 754–755CrossRefGoogle Scholar
  45. 45.
    Goldman N. Simple diagnostic statistical tests of models of DNA substitution. J Mol Evol, 1993, 37: 650–661Google Scholar
  46. 46.
    Goldman N. Statistical tests of models of DNA substitution. J Mol Evol, 1993, 36: 182–198CrossRefGoogle Scholar
  47. 47.
    Huelsenbeck J P, Crandall K A. Phylogeny estimation and hypothesis testing using maximum likelihood. Ann Rev Ecol Syst, 1997, 28: 437–466CrossRefGoogle Scholar
  48. 48.
    Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 2003, 52: 696–704CrossRefGoogle Scholar
  49. 49.
    Posada D. jModeltest: Phylogenetic model averaging. Mol Phylogen Evol, 2008, 25: 1253–1256Google Scholar
  50. 50.
    Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 1985, 39: 783–791CrossRefGoogle Scholar
  51. 51.
    Drummond A J, Nicholls G K, Rodrigo A G, et al. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics, 2002, 161: 1307–1320Google Scholar
  52. 52.
    Drummond A J, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol, 2007, 7: 214–221CrossRefGoogle Scholar
  53. 53.
    Cavender T M. The fossil record of Cyprinidae. In: Winfield I J, Nelson J S, eds. Cyprinid Fishes. Systematics, Biology and Exploitation. London: Chapman and Hall, 1991. 127–155Google Scholar
  54. 54.
    Cao W X, Chen Y Y, Wu Y F, et al. Origin and evolution of schizothorscine fishes in relation to the upheaval of the Qinghai-Xizang Plateau. In: The Comprehensive Scientific Expedition to the QinghaiXizang Plateau, CAS, ed. Studies on the Period, Amplitude and Type of the Uplift of the Qinghai-Xizang Plateau (in Chinese). Beijing: Science Press, 1981. 118–130Google Scholar
  55. 55.
    Stewart K M. The freshwater fish of Neogene Africa (Miocene-Pleistocene): Systematics and biogeography. Fish Fish, 2001, 2: 177–230CrossRefGoogle Scholar
  56. 56.
    Zhong D L, Ding L, Zhang J J, et al. Coupling of the lithospheric convergence of west China and dispersion of East China in Cenozoic link with paleoenviromental changes (in Chinese). Quaternary Sci, 2001, 21: 303–312Google Scholar
  57. 57.
    Zheng L P, Yang J X, Cheng X Y. Phylogeny of the Labeoninae (Teleostei, Cypriniformes) based on nuclear DNA sequences and implications on character evolution and biogeography. Curr Zool, 2012, 58: 837–850Google Scholar
  58. 58.
    Chen G J, Liu J. First fossil Barbin (Cyprinidae, Teleostei) from Oligocene of Qaidam Basin in northern Tibetan Plateau. Vert Palasiatica, 2007, 45: 330–341Google Scholar
  59. 59.
    Che J, Zhou W W, Hua J S, et al. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc Natl Acad Sci USA, 2010, 107: 13765–13770CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Jing Wang
    • 1
  • XiaoYun Wu
    • 1
    • 2
  • ZiMing Chen
    • 3
  • ZhaoPing Yue
    • 3
  • Wei Ma
    • 1
  • ShanYuan Chen
    • 1
  • Heng Xiao
    • 3
  • Robert W. Murphy
    • 2
    • 4
  • YaPing Zhang
    • 1
    • 2
  • RuiGuang Zan
    • 3
  • Jing Luo
    • 1
  1. 1.Laboratory of Conservation and Utilization of Bio-resources and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life SciencesYunnan UniversityKunmingChina
  2. 2.State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of ZoologyChinese Academy of SciencesKunmingChina
  3. 3.School of Life SciencesYunnan UniversityKunmingChina
  4. 4.Centre for Biodiversity and Conservation Biology, Department of Natural HistoryRoyal Ontario MuseumTorontoCanada

Personalised recommendations