Advertisement

Chinese Science Bulletin

, Volume 58, Issue 22, pp 2723–2727 | Cite as

Switching emissions of two tetraphenylethene derivatives with solvent vapor, mechanical, and thermal stimuli

  • JunQing Shi
  • WeiJun Zhao
  • CuiHong Li
  • ZhengPing Liu
  • ZhiShan Bo
  • YuPing Dong
  • YongQiang Dong
  • Ben Zhong Tang
Open Access
Letter Special Issue: Molecular Materials and Devices

Abstract

Two derivatives of tetraphenylethene (TPE) were synthesized through one step cross McMurry coupling reaction. Both luminogens exhibit aggregation-induced emission (AIE) and crystallization induced emission enhancement (CIEE). The emissions of both luminogens could be switched between blue and green through reversible modulation of morphology with thermal, organic solvent fuming and mechanical stimuli. Thus we provide a possible design strategy for emission switching materials.

Keywords

aggregation-induced emission (AIE) crystallization-induced emission enhancement (CIEE) mechanochromic fluorescence 

Supplementary material

11434_2013_5868_MOESM1_ESM.pdf (657 kb)
Supplementary material, approximately 657 KB.

References

  1. 1.
    Zhu W, Huang X M, Guo Z Q, et al. Chem Commun, 2012, 48: 1784–1786CrossRefGoogle Scholar
  2. 2.
    Xue W X, Zhang G X, Zhang D Q, et al. Org Lett, 2010, 12: 2274–2277CrossRefGoogle Scholar
  3. 3.
    Kishimura A, Yamashita T, Yamaguchi K, et al. Nat Mater, 2005, 4: 546–549CrossRefGoogle Scholar
  4. 4.
    Mutai T, Satou H, Araki K. Nat Mater, 2005, 4: 685–687CrossRefGoogle Scholar
  5. 5.
    Zhao Y F, Gao H Z, Fan Y, et al. Adv Mater, 2009, 21: 3165–3169CrossRefGoogle Scholar
  6. 6.
    Chi Z, Zhang X, Xu B, et al. Chem Soc Rev, 2012, 41: 3878–3896CrossRefGoogle Scholar
  7. 7.
    Teng M J, Jia X R, Yang S, et al. Adv Mater, 2012, 24: 1255–1261CrossRefGoogle Scholar
  8. 8.
    Sagara Y, Kato T. Nat Chem, 2009, 1: 605–610CrossRefGoogle Scholar
  9. 9.
    Abe Y, Karasawa S, Koga N. Chemistry-Europ J, 2012, 18: 15038–15048CrossRefGoogle Scholar
  10. 10.
    Hong Y N, Lam J W Y, Tang B Z. Chem Soc Rev, 2011, 40: 5361–5388CrossRefGoogle Scholar
  11. 11.
    Luo J D, Xie Z L, Lam J W Y, et al. Chem Commun, 2001, 1740–1741Google Scholar
  12. 12.
    Dong Y Q, Lam J W Y, Qin A J, et al. Chem Commun, 2007, 40–42Google Scholar
  13. 13.
    Huang J, Sun N, Yang J, et al. J Mater Chem, 2012, 22: 12001–12007CrossRefGoogle Scholar
  14. 14.
    Luo X L, Li J N, Li C H, et al. Adv Mater, 2011, 23: 3261–3265CrossRefGoogle Scholar
  15. 15.
    Gu X, Yao J, Zhang G, et al. Adv Funct Mater, 2012, 22: 4862–4872CrossRefGoogle Scholar
  16. 16.
    Xu B J, Chi Z G, Zhang J Y, et al. Chem-Asian J, 2011, 6: 1470–1478CrossRefGoogle Scholar
  17. 17.
    Huang J, Yang X, Wang J, et al. J Mater Chem, 2012, 22: 2478–2484CrossRefGoogle Scholar
  18. 18.
    Dong Y Q, Lam J W Y, Qin A J, et al. Appl Phys Lett, 2007, 91: 011111–011113CrossRefGoogle Scholar
  19. 19.
    Luo X, Zhao W, Shi J, et al. J Phys Chem C, 2012, 116: 21967–21972CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • JunQing Shi
    • 1
  • WeiJun Zhao
    • 1
  • CuiHong Li
    • 1
  • ZhengPing Liu
    • 1
  • ZhiShan Bo
    • 1
  • YuPing Dong
    • 2
  • YongQiang Dong
    • 1
  • Ben Zhong Tang
    • 3
    • 4
  1. 1.Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijingChina
  2. 2.College of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina
  3. 3.Department of ChemistryThe Hong Kong University of Science & Technology (HKUST)Kowloon, Hong KongChina
  4. 4.Institute of Biomedical Macromolecules, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations