Chinese Science Bulletin

, Volume 58, Issue 16, pp 1931–1935

Tooth loss and alveolar remodeling in Sinosaurus triassicus (Dinosauria: Theropoda) from the lower jurassic strata of the Lufeng Basin, China

  • LiDa Xing
  • Phil R. Bell
  • Bruce M. Rothschild
  • Hao Ran
  • JianPing Zhang
  • ZhiMing Dong
  • Wei Zhang
  • Philip J. Currie
Open Access
Article Geology

Abstract

Pathological or traumatic loss of teeth often results in the resorption and remodeling of the affected alveoli in mammals. However, instances of alveolar remodeling in reptiles are rare. A remodeled alveolus in the maxilla of the Chinese theropod Sinosaurus (Lower Jurassic Lower Lufeng Formation) is the first confirmed example of such dental pathology in a dinosaur. Given the known relationship between feeding behavior and tooth damage in theropods (teeth with spalled enamel, tooth crowns embedded in bone) and the absence of dentary, maxillary, and premaxillary osteomyelitis, traumatic loss of a tooth is most likely the cause of alveolar remodeling. Based on the extent of remodeling, the injury and subsequent tooth loss were non-fatal in this individual.

Keywords

alveolar remodeling paleopathology Sinosaurus Lufeng Basin China 

References

  1. 1.
    Molnar R E. Theropod paleopathology: A literature survey. In: Tanke D H, Carpenter K, eds. Mesozoic Vertebrate Life. Bloomington: Indiana University Press, 2001. 337–363Google Scholar
  2. 2.
    Rothschild B, Tanke D H. Theropod paleopathology, state-of-the-art review. In: Carpenter K, ed. The Carnivorous Dinosaurs. Bloomington: Indiana University Press, 2005. 351–365Google Scholar
  3. 3.
    Lü J C, Kobayashi Y, Lee Y N, et al. A new Psittacosaurus (Dinosauria: Ceratopsia) specimen from the Yixian Formation of western Liaoning, China: The first pathological psittacosaurid. Cret Res, 2007, 28: 272–276CrossRefGoogle Scholar
  4. 4.
    Rothschild B, Zheng X T, Martin L. Osteoarthritis in the early avian radiation: Earliest recognition of the disease in birds. Cret Res, 2012, 35: 178–180CrossRefGoogle Scholar
  5. 5.
    Tanke D H, Currie P J. Head-biting behavior in theropod dinosaurs: Paleopathological evidence. Gaia, 2000, 15: 167–184Google Scholar
  6. 6.
    Xing L D, Dong H, Peng G Z, et al. A scapular fracture in Yang-chuanosaurus hepingensis (Dinosauria: Theropoda). Geol Bull Chin, 2009, 28: 1390–1395Google Scholar
  7. 7.
    Hu S J. A new Theropoda (Dilophosaurus sinensis sp. nov.) from Yunnan, China. Vert PalAs, 1993, 31: 65–69Google Scholar
  8. 8.
    Dong Z M. Contributions of new dinosaur materials from China to dinosaurology. Mem Fukui Pref Dino Mus, 2003, 2: 123–131Google Scholar
  9. 9.
    Xing L D. Sinosaurus from southwestern China. MS Thesis (unpublished). Edmonton: University of Alberta, 2012Google Scholar
  10. 10.
    Smith N D, Makovicky P J, Hammer W R, et al. Osteology of Cryolophosaurus ellioti (Dinosauria: Theropoda) from the Early Jurassic of Antarctica and implications for early theropod evolution. Zool J linn Soc Lond. 2007. 151: 377–421CrossRefGoogle Scholar
  11. 11.
    Luo Z X, Wu X C. The small tetrapods of the Lower Lufeng Formation, Yunnan, China. In: Fraser N C, Sues H D, eds. In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods. Cambridge: Cambridge University Press, 1994. 251–270Google Scholar
  12. 12.
    Bien M N. “Red Beds” of Yunnan. Bull Geol Soc Chin, 1941, 21: 159–198Google Scholar
  13. 13.
    Young C C. The Lufeng saurischian fauna in China. Palaeontol Sin, 1951, New Series C 13: 1–96Google Scholar
  14. 14.
    Sheng S F, Chang L Q, Cai S Y, et al. The problem of the age and correlation of the red beds and the coal series of Yunnan and Szechuan. Acta Geol Sin, 1962, 42: 31–56Google Scholar
  15. 15.
    Sun A L, Cui K H. A brief introduction to the Lower Lufeng saurischian fauna (Lower Jurassic: Lufeng, Yunnan, People’s Republic of China). In: Padian K, ed. The Beginning of the Age of Dinosaurs: Faunal Change Across the Triassic-Jurassic Boundary. Cambridge: Cambridge University Press, 1986. 275–278Google Scholar
  16. 16.
    Fang X S, Pang Q J, Lu L W, et al. Lower, Middle, and Upper Jurassic subdivision in the Lufeng region, Yunnan Province. In: Editorial Committee of the Proceedings of the Third National Stratigraphical Congress of China, eds. Proceedings of the Third National Stratigraphical Congress of China. Beijing: Geological Publishing House, 2000. 208–214Google Scholar
  17. 17.
    Barrett P M, Upchurch P, Wang X L. Cranial osteology of Lufengosaurus hueni Young (Dinosauria: Prosauropoda) from the Lower Jurassic of Yunnan, People’s Republic of China. J Vert Paleontol, 2005, 25: 806–822CrossRefGoogle Scholar
  18. 18.
    Farlow J O, Brinkman D L, Abler W L, et al. Size, shape, and serration density of theropod dinosaur lateral teeth. Mod Geol, 1991, 16: 161–198Google Scholar
  19. 19.
    Farlow J O, Brinkman D L. Wear surfaces on the teeth of tyrannosaurs. Paleontol Soc Spec Publ, 1994, 7. 165–175Google Scholar
  20. 20.
    Schubert B W, Ungar P S. Wear facets and enamel spalling in tyrannosaurid dinosaurs. Acta Palaeontol Pol, 2005, 50: 93–99Google Scholar
  21. 21.
    Erickson G M. Split carinae on tyrannosaurid teeth and implications of their development. J Vert Paleontol, 1995, 15: 268–274CrossRefGoogle Scholar
  22. 22.
    Carpenter K. Baby dinosaurs from the Late Cretaceous lance and Hell Creek formations and a description of a new species of theropod. U Wyo Contr Geol, 1982, 20: 123–134Google Scholar
  23. 23.
    Wolff E D S, Varricchio D. Zoological paleopathology and the case of the tyrannosaurus jaw: Integrating phylogeny and the study of ancient disease. Geol Soc Am Abstr Prog, 2005, 37: 88Google Scholar
  24. 24.
    Rothschild B M, Molnar R E. Tyrannosaurid pathologies as clues to nature and nuture in the Cretaceous. In: Larson P, Carpenter K, eds. Tyrannosaurus rex, the Tyrant King. Bloomington: Indiana University Press, 2008. 287–306Google Scholar
  25. 25.
    Bell P R, Currie P J. A tyrannosaur jaw bitten by a confamilial: Scavenging or fatal agonism? Lethaia, 2009, 43: 278–281CrossRefGoogle Scholar
  26. 26.
    Bell P R. Palaeopathological changes in a population of Albertosaurus sarcophagus from the Upper Cretaceous Horseshoe Canyon Formation of Alberta, Canada. Can J Earth Sci, 2010, 47: 1263–1268CrossRefGoogle Scholar
  27. 27.
    Moodie R L. Dental abscesses in a dinosaur millions of years old, and the oldest yet known. Pac Dent Gaz, 1930, 38: 435–440Google Scholar
  28. 28.
    Reisz R, Scott D M, Pynn B R, et al. Osteomyelitis in a Paleozoic reptile: Ancient evidence for bacterial infection and its evolutionary significance. Naturwissenschaften, 2011, 98: 551–555CrossRefGoogle Scholar
  29. 29.
    Morgan J. Observable stages and scheduling for alveolar remodeling following antemortem tooth loss. Dissertation for the Doctoral Degree (unpublished). Mainz: Johannes Gutenberg-Universität, 2011Google Scholar
  30. 30.
    Hungerbühler A. Heterodonty in the European phytosaur Nicrosaurus kapffi and its implications for the taxonomic utility and functional morphology of phytosaur dentitions. J Vert Paleontol, 2000, 20: 31–48CrossRefGoogle Scholar
  31. 31.
    Rothschild B M, Schultze H P, Peligrini R. Herpetological Osteopathology: Annotated Bibliography of Amphibians and Reptiles. Heidelberg: Springer-Verlag, 2012CrossRefGoogle Scholar
  32. 32.
    Miles A E, Grigson C. Colyer’s Variations and Diseases of the Teeth of Animals. Cambridge: Cambridge University Press, 1990CrossRefGoogle Scholar
  33. 33.
    Stoner K E. Dental pathology in Pongo satyrus borneensis. Am J Phys Anthropol, 1995, 98: 307–321CrossRefGoogle Scholar
  34. 34.
    Cuozzo F P, Sauther M L. Tooth loss, survival, and resource use in wild ring-tailed lemurs (Lemur catta): Implications for inferring conspecific care in fossil hominids. J Hum Evol, 2004, 46: 623–631CrossRefGoogle Scholar
  35. 35.
    Cuozzo F P, Sauther M L. Severe wear and tooth loss in wild ring-tailed lemurs (Lemur catta): A function of feeding ecology, dental structure, and individual life history. J Hum Evol, 2006, 51: 490–505CrossRefGoogle Scholar
  36. 36.
    Hillson S. Recording dental caries in archaeological remains. Int J Osteoarchaeol, 2001, 11: 249–289CrossRefGoogle Scholar
  37. 37.
    Lukacs J R. Dental trauma and antemortem tooth loss in prehistoric Canary Islanders: Prevalence and contributing factors. Int J Osteoarchaeol, 2007, 17: 157–173CrossRefGoogle Scholar
  38. 38.
    Wright G, Bell A, McGlashan, G, et al. Dentoalveolar trauma in Glasgow: An audit of mechanism and injury. Dent Traumatol, 2007, 23: 226–231.CrossRefGoogle Scholar
  39. 39.
    Schubert B W, Ungar P S. Wear facets and enamel spalling in tyrannosaurid dinosaurs. Acta Palaeontol Pol, 2005, 50: 93–99Google Scholar
  40. 40.
    Varricchio D, Horner J R. Hadrosaurid and lambeosaurid bonebeds from the Upper Cretaceous Two Medicine Formation of Montana: Taphonomic and biologic implications. Can J Earth Sci, 1993, 29: 997–1006CrossRefGoogle Scholar
  41. 41.
    Ryan M J, Russell A P, Eberth D A, et al. The taphonomy of a Centrosaurus (Ornithischia: Ceratopsidae) bonebed from the Dinosaur Park Formation (Upper Campanian), Alberta, Canada, with comments on cranial ontogeny. Palaios, 2001, 16: 482–506CrossRefGoogle Scholar
  42. 42.
    Eberth D A, Getty M. Ceratopsian bonebeds. In: Currie P J, Koppelhus E B, eds. Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed. Bloomington: Indiana University Press, 2005. 501–536Google Scholar
  43. 43.
    Currie P J, Jacobsen A R. An azhdarchid pterosaur eaten by a velociraptorine theropod. Can J Earth Sci, 1995, 32: 922–925CrossRefGoogle Scholar
  44. 44.
    Buffetaut E, Martill D, Escuillié F. Pterosaurs as part of a spinosaur diet. Nature, 2004, 430: 33CrossRefGoogle Scholar
  45. 45.
    Xing L D, Bell P R, Currie P J, et al. A sauropod rib with an embedded theropod tooth: Direct evidence for feeding behaviour in the Jehol group, China. Lethaia, 2012, doi: 10.1111/j.1502-3931.2012.00310.xGoogle Scholar
  46. 46.
    Marsh O. Principal characters of American Jurassic dinosaurs part VIII the order Theropoda. Am J Sci, 1884, 27: 411–416Google Scholar
  47. 47.
    Rothschild B M. Dinosaurian paleopathology. In: Farlow J O, Brett-Surman M K, eds. The Complete Dinosaur. Bloomington: Indiana University Press, 1997. 426–448Google Scholar
  48. 48.
    Schropp L, Wenzel A, Kostopoulos L, et al. Bone healing and soft tissue contour changes following single-tooth extraction: A clinical and radiographic 12-month prospective study. Int J Perio Rest Dent, 2003, 23: 313–323Google Scholar
  49. 49.
    Hanna R R. Multiple injury and infection in a sub-adult theropod dinosaur Allosaurus fragilis with comparisons to allosaur pathology in the Cleveland-Lloyd Dinosaur Quarry collection. J Vert Paleontol, 2002, 22: 76–90CrossRefGoogle Scholar
  50. 50.
    Farke A A, O’Connor P M. Pathology in Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. J Vert Paleontol, 2007, 27(Suppl 2): 180–184CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • LiDa Xing
    • 1
    • 2
  • Phil R. Bell
    • 3
  • Bruce M. Rothschild
    • 4
  • Hao Ran
    • 5
  • JianPing Zhang
    • 2
  • ZhiMing Dong
    • 6
  • Wei Zhang
    • 7
  • Philip J. Currie
    • 1
  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.School of the Earth Sciences and ResourcesChina University of GeosciencesBeijingChina
  3. 3.Pipestone Creek Dinosaur InitiativeClairmontCanada
  4. 4.Division of Vertebrate Paleontology, Natural History Museum and Biodiversity Research InstituteUniversity of KansasLawrenceUSA
  5. 5.Ministry of EducationKey Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)GuilinChina
  6. 6.Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
  7. 7.Department of Computer EngineeringChengdu Electromechanical CollegeChengduChina

Personalised recommendations