Chinese Science Bulletin

, Volume 59, Issue 8, pp 785–794 | Cite as

Investigating different bio-responses of the upper ocean to Typhoon Haitang using Argo and satellite data

Article Oceanology

Abstract

The responses of the upper ocean to Typhoon Haitang in July 2005 are investigated using Argo float and multiplatform satellite data. The results show decreasing sea surface temperature (SST), a deepening of the mixed layer depth (MLD), and enhanced Chlorophyll-a (Chl-a) concentration. Two extreme cool regions are identified. While the magnitude of SST cooling in the two regions is similar, the biological response (Chl-a enhancement) differs. To facilitate comparisons, the region to the northeast of Taiwan is defined as region A and the region east of Taiwan as region B. Ekman pumping and the intrusion of the Kuroshio play an important role in the enhancement of Chl-a in region A. Cold eddies provide the material source for the formation of the cold center in region B, where mixing is dominant. Because of the relatively high translation speed (5 m/s) in region B, Ekman pumping has little influence on the cooling and Chl-a enhancement processes. Moreover, the MLD is shallower than the nutricline, which means that mixing does not result in a marked increase in nutrients in the euphotic layer (where the nutrient concentration is uniformly depleted). Sea temperatures, in contrast, gradually decrease with depth below the bottom of the mixed layer. In contrast to region A, region B showed no significant enhancement of Chl-a but strong SST cooling.

Keywords

Ocean response Tropical cyclone SST cooling Ekman pumping Chlorophyll-a enhancement 

Notes

Acknowledgments

We thank JTWC for providing typhoon track data, NASA’s Ocean Color Working Group for providing merged MODIS and SeaWiFS data, NODC for GHRSST data, UCAR for QSCAT/NCEP Blended Ocean Wind data, AVISO for SSHA data and geostrophic current data, and GODAE for ARGO float profiles. This work was supported by the National Natural Science Foundation of China (40976011), the National Basic Research Program of China (2013CB430300), and the Public Science and Technology Research Funds Projects of Ocean (201105018).

References

  1. 1.
    Lin I, Liu WT, Wu C-C et al (2003) New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys Res Lett 30:1781. doi:10.1029/2003GL017141 CrossRefGoogle Scholar
  2. 2.
    Shang S, Li L, Sun F et al (2008) Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001. J Geophys Res 35:L10602. doi:10.1029/2008GL033502 Google Scholar
  3. 3.
    Shan HX, Guan YP, Wang DX et al (2012) Responses of equatorial ocean to rare typhoon Vamei. J Tropical Oceanogr 31:28–34 (in Chinese)Google Scholar
  4. 4.
    Price JF (1981) Upper ocean response to a hurricane. J Phys Oceanogr 11:153–175CrossRefGoogle Scholar
  5. 5.
    Price JF, Sanford TB, Forristall GZ (1994) Forced stage response to a moving hurricane. J Phys Oceanogr 24:233–260CrossRefGoogle Scholar
  6. 6.
    Huang P, Sanford TB, Imberger J (2009) Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). J Geophys Res 114:C12023. doi:10.1029/2009JC005603 CrossRefGoogle Scholar
  7. 7.
    Jacob SD, Shay LK, Marianoand AJ et al (2000) The 3D oceanic mixed layer response to Hurricane Gilbert. J Phys Oceanogr 30:1407–1429CrossRefGoogle Scholar
  8. 8.
    Lin I-I, Pun I-F, Wu C-C (2009) Upper-ocean thermal structure and the western North Pacific Category 5 Typhoons. Part II: dependence on translation speed. Mon Weather Rev 137:3744–3757CrossRefGoogle Scholar
  9. 9.
    Babin SM, Carton JA, Dickey TD et al (2004) Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J Geophys Res 109:C03043. doi:10.1029/2003JC001938 Google Scholar
  10. 10.
    Wu C-R, Chang Y-L, Oey L-Y et al (2008) Air-sea interaction between tropical cyclone Nari and Kuroshio. Geophys Res Lett 35:L12605. doi:10.1029/2008GL033942 CrossRefGoogle Scholar
  11. 11.
    Tsai Y, Chern CS, Wang J (2008) The upper ocean response to a moving typhoon. J Oceanogr 64:115130CrossRefGoogle Scholar
  12. 12.
    Oey L-Y, Ezer T, Wang DP et al (2007) Hurricane-induced motions and interaction with ocean currents. Cont Shelf Res 27:1249–1263CrossRefGoogle Scholar
  13. 13.
    Sheng J, Wang L, Andréfouët S et al (2007) Upper ocean response of the Mesoamerican Barrier Reef System to Hurricane Mitch and coastal freshwater inputs: a study using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data and a nested-grid ocean circulation model. J Geophys Res 112:C07016. doi:10.1029/2006JC003900 Google Scholar
  14. 14.
    Liu XM, Wang M, Shi W (2009) A study of a Hurricane Katrina-induced phytoplankton bloom using satellite observations and model simulations. J Geophys Res 114:C03023. doi:10.1029/2008JC004934 Google Scholar
  15. 15.
    Nam SH, Kim D-J, Moon WM (2012) Observed impact of mesoscale circulation on oceanic response to Typhoon Man-Yi 2007. Ocean Dyn 62:1–12CrossRefGoogle Scholar
  16. 16.
    Chang Y, Liao H-T, Lee M-A et al (2008) Multisatellite observation on upwelling after the passage of Typhoon Hai-Tang in the southern East China Sea. Geophys Res Lett 35:L03612. doi:10.1029/2007GL032858 Google Scholar
  17. 17.
    Zheng Z-W, Ho C-R, Kuo N-J (2008) Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang. Geophys Res Lett 35:L20603. doi:10.1029/2008GL035524 CrossRefGoogle Scholar
  18. 18.
    Ho C-R, Zheng Q, Zheng Z-W et al (2009) Reply to comment by A. Wada et al. on “Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang”. Geophys Res Lett 36:L09604. doi:10.1029/2009GL037443 CrossRefGoogle Scholar
  19. 19.
    Wada A, Sato K, Usui N et al (2009) Comment on “Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang” by Z.-W. Zheng, C.-R. Ho, and N.-J. Kuo. Geophys Res Lett 36:L09603. doi:10.1029/2008GL036890 CrossRefGoogle Scholar
  20. 20.
    Morimoto A, Kojima S, Jan S (2009) Movement of the Kuroshio axis to the northeast shelf of Taiwan during typhoon events. Estuar Coast Shelf Sci 82:547–552CrossRefGoogle Scholar
  21. 21.
    Wada A, Usui N (2010) Impacts of oceanic preexisting conditions on predictions of Typhoon Hai-Tang in 2005. Adv Meteorol 2010:756071. doi:10.1155/2010/756071 CrossRefGoogle Scholar
  22. 22.
    Wada A, Kohno N, Kawai Y (2010) Impact of wave–ocean interaction on Typhoon Hai-Tang in 2005. Sci Online Lett Atmos 6A:13–16Google Scholar
  23. 23.
    Zheng Z-W, Ho C-R, Zheng Q et al (2010) Effects of preexisting cyclonic eddies on upper ocean responses to Category 5 typhoons in the western North Pacific. J Geophys Res 115:C09013. doi:10.1029/2009JC005562 Google Scholar
  24. 24.
    Chang Y-C, Tseng R-S, Centurioni LR (2010) Typhoon-induced strong surface flows in the Taiwan Strait and Pacific. J Oceanogr 66:175–182CrossRefGoogle Scholar
  25. 25.
    Walker ND, Leben RR, Balasubramanian S (2005) Hurricane-forced upwelling and Chlorophyll-a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys Res Lett 32:L18610. doi:10.1029/2005GL023716 CrossRefGoogle Scholar
  26. 26.
    Subrahmanyam B, Rao KH, Rao NS et al (2002) Influence of a tropical cyclone on Chlorophyll-a concentration in the Arabian Sea. Geophys Res Lett 29:2065. doi:10.1029/2002GL015892 CrossRefGoogle Scholar
  27. 27.
    Zhao H, Tang DL (2007) Effect of 1998 El Niño on the distribution of phytoplankton in the South China Sea. J Geophys Res 112:C02017. doi:10.1029/2006JC003536 Google Scholar
  28. 28.
    Large WG, Pond S (1981) Open ocean flux measurements in moderate to strong winds. J Phys Oceanogr 11:324–336CrossRefGoogle Scholar
  29. 29.
    Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283CrossRefGoogle Scholar
  30. 30.
    Kara AB, Rochford PA, Hurlburt HE (2000) An optimal definition for ocean mixed layer depth. Geophys Res Lett 105:16803–16821. doi:10.1029/2000JC900072 CrossRefGoogle Scholar
  31. 31.
    Elsberry RL, Fraim TS, Trapnell RN Jr (1976) A mixed layer model of the ocean thermal response to hurricanes. J Geophys Res 81:1153–1162. doi:10.1029/JC081i006p01153 CrossRefGoogle Scholar
  32. 32.
    Lin I-I, Wu C-C, Emanuel KA et al (2005) The interaction of Supertyphoon Maemi (2003) with a Warm Ocean Eddy. Mon Weather Rev 133:2635–2649CrossRefGoogle Scholar
  33. 33.
    Scharroo R, Smith WHF, Lillibridge JL (2005) Satellite altimetry and the intensification of Hurricane Katrina. EOS Trans AGU 86:366CrossRefGoogle Scholar
  34. 34.
    Pun I-F, Lin I–I, Wu C-R et al (2007) Validation and application of altimetry-derived upper ocean thermal structure in the Western North Pacific Ocean for Typhoon intensity forecast. IEEE Trans Geosci Remote Sens 45:1616–1630CrossRefGoogle Scholar
  35. 35.
    Shi W, Wang M (2007) Observations of a Hurricane Katrina induced phytoplankton bloom in the Gulf of Mexico. Geophys Res Lett 34:L11607. doi:10.1029/2007GL029724 CrossRefGoogle Scholar
  36. 36.
    Guo X, Zhu X-H, Wu Q-S et al (2012) The Kuroshio nutrient stream and its temporal variation in the East China Sea. J Geophys Res 117:C01026. doi:10.1029/2011JC007292 Google Scholar
  37. 37.
    Morel A, Huot Y, Gentili B et al (2007) Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens Environ 111:69–88CrossRefGoogle Scholar
  38. 38.
    Shibano R, Yamanaka Y, Okada N et al (2011) Responses of marine ecosystem to typhoon passage s in the western subtropical North Pacific. Geophys Res Lett 38:L18608. doi:10.1029/2011GL048717 CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  2. 2.State Key Laboratory of Tropical Oceanography, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina

Personalised recommendations