Chinese Science Bulletin

, Volume 59, Issue 2, pp 201–211 | Cite as

Simulation of Greenland ice sheet during the mid-Pliocene warm period

  • Qing Yan
  • Zhongshi Zhang
  • Huijun Wang
  • Ran Zhang
Article Atmospheric Science


One of the key uncertainties in future sea-level projections is attributed to the Greenland ice sheet (GrIS). Studying the response of the GrIS to climate changes during the past warm periods is helpful for understanding future changes in the GrIS. In this study, using three global climate models (Community Atmosphere Model version 3.1 and version 4.0 and Norwegian Earth System Model) and a three-dimensional ice sheet model, we investigate the climate and ice sheet changes over Greenland during the mid-Pliocene warm period (~3 Ma bp). The results show that the regionally averaged summer temperature over Greenland is 9.4–13.4 °C higher during the mid-Pliocene period than during the pre-industrial era and the annual mean precipitation is 65.2–108.3 mm a−1 greater. In response to this warm-wet climate, the GrIS shows a substantial decrease in size during the mid-Pliocene, with little ice existing along the eastern coast of Greenland. Compared to that simulated in the control run, the global sea level is approximately 7.8–8.1 m higher during the mid-Pliocene due to the decrease in the size of the GrIS. In addition, paleoclimate proxies also indicate that it is unlikely that a large-scale ice sheet exists over Greenland during the mid-Pliocene warm period.


GrIS Mid-Pliocene Paleoclimate modeling Ice sheet modeling Paleoclimate proxies 



This work was supported by the National Basic Research Program of China (2010CB950102 and 2009CB421406) and the Strategic and Special Frontier Project of Science and Technology of the Chinese Academy of Sciences (XDA05080803).


  1. 1.
    Bamber JL, Layberry RL, Gogineni SP (2001) A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors. J Geophys Res 106:33773–33780CrossRefGoogle Scholar
  2. 2.
    Nicholls RJ (2011) Planning for the impacts of sea level rise. Oceanography 24:144–157CrossRefGoogle Scholar
  3. 3.
    Dowsett HJ, Robinson MM, Haywood AM et al (2010) The PRISM3D paleoenvironmental reconstruction. Stratigraphy 7:123–139Google Scholar
  4. 4.
    Dowsett HJ, Robinson MM, Foley KM (2009) Pliocene three-dimensional global ocean temperature reconstruction. Clim Past 5:769–783CrossRefGoogle Scholar
  5. 5.
    Dwyer GS, Chandler MA (2009) Mid-Pliocene sea level and continental ice volume based on coupled benthic Mg/Ca palaeotemperatures and oxygen isotopes. Philos Trans R Soc A 367:157–168CrossRefGoogle Scholar
  6. 6.
    Salzmann U, Haywood AM, Lunt D et al (2008) A new global biome reconstruction and data-model comparison for the middle Pliocene. Glob Ecol Biogeogr 17:432–447CrossRefGoogle Scholar
  7. 7.
    Haywood AM, Hill DJ, Dolan AM et al (2013) Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim Past 9:191–209CrossRefGoogle Scholar
  8. 8.
    Yan Q, Zhang ZS, Wang HJ et al (2012) Set-up and preliminary results of mid-Pliocene climate simulations with CAM3.1. Geosci Model Dev 5:289–297CrossRefGoogle Scholar
  9. 9.
    Yan Q, Zhang Z, Gao Y (2012) An East Asian monsoon in the mid-Pliocene. Atmos Ocean Sci Lett 5:449–454Google Scholar
  10. 10.
    Zhang Z, Nisancioglu KH, Ninnemann US (2013) Increased ventilation of Antarctic deep water during the warm mid-Pliocene. Nat Commun. doi: 10.1038/ncomms2521 Google Scholar
  11. 11.
    Jansen E, Overpeck J, Briffa KR et al (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Robinson MM, Dowsett HJ, Chandler MA (2008) Pliocene role in assessing future climate impacts. EOS 89:501–502CrossRefGoogle Scholar
  13. 13.
    Lunt DJ, Foster GL, Haywood AM et al (2008) Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature 454:1102–1105CrossRefGoogle Scholar
  14. 14.
    Lunt DJ, Haywood AM, Foster GL et al (2009) The Arctic cryosphere in the Mid-Pliocene and the future. Philos Trans R Soc A 367:49–67CrossRefGoogle Scholar
  15. 15.
    Dolan AM, Haywood AM, Hill DJ et al (2011) Sensitivity of Pliocene ice sheets to orbital forcing. Palaeogeogr Palaeoclimatol Palaeoecol 309:98–110CrossRefGoogle Scholar
  16. 16.
    Hill DJ, Dolan AM, Haywood AM et al (2010) Sensitivity of the Greenland ice sheet to Pliocene sea surface temperatures. Stratigraphy 7:111–121Google Scholar
  17. 17.
    Dowsett HJ, Barron JA, Poore RZ et al (1999) Middle Pliocene paleoenvironmental reconstruction: PRISM2. US Geol Surv Open File Rep, pp 99–535Google Scholar
  18. 18.
    Collins WD, Rasch PJ, Boville BA et al (2004) Description of the NCAR Community Atmosphere Model (CAM 3.0). Technical Note (NCAR/TN-464+STR), National Center for Atmospheric ResearchGoogle Scholar
  19. 19.
    Collins WD, Rasch PJ, Boville BA et al (2006) The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J Clim 19:2144–2161CrossRefGoogle Scholar
  20. 20.
    Wei T, Wang L, Dong W et al (2011) A comparison of East Asian summer monsoon simulations from CAM3.1 with three dynamic cores. Theor Appl Climatol 106:295–306CrossRefGoogle Scholar
  21. 21.
    Donohoe A, Battisti DS (2009) Causes of reduced North Atlantic storm activity in a CAM3 simulation of the Last Glacial Maximum. J Clim 22:4793–4808CrossRefGoogle Scholar
  22. 22.
    Huber M, Caballero R (2011) The early Eocene equable climate problem revisited. Clim Past 7:603–633CrossRefGoogle Scholar
  23. 23.
    Neale R, Richter J, Jochum M et al (2010) Description of the NCAR Community Atmosphere Model (CAM 4.0). Technical Note (NCAR/TN-486-STR), National Center for Atmospheric ResearchGoogle Scholar
  24. 24.
    Bentsen M, Bethke I, Debernard JB et al (2013) The Norwegian Earth System Model, NorESM1-M—Part 1: description and basic evaluation. Geosci Model Dev 6:687–720CrossRefGoogle Scholar
  25. 25.
    Greve R (1995) Thermomechanisches Verhalten polythermer Eisschilde: Theorie, Analytik, Numerik. Dissertation, Darmstadt University of TechnologyGoogle Scholar
  26. 26.
    Greve R (1997) A continuum—mechanical formulation for shallow polythermal ice sheets. Philos Trans R Soc A 355:921–974CrossRefGoogle Scholar
  27. 27.
    Applegate PJ, Kirchner N, Stone EJ et al (2012) An assessment of key model parametric uncertainties in projections of Greenland Ice Sheet behavior. Cryosphere 6:589–606CrossRefGoogle Scholar
  28. 28.
    Greve R (1997) Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. J Clim 10:901–918CrossRefGoogle Scholar
  29. 29.
    Greve R (2000) On the response of the Greenland ice sheet to greenhouse climate change. Clim Change 46:289–303CrossRefGoogle Scholar
  30. 30.
    Greve R, Saito F, Abe-Ouchi A (2011) Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland ice sheet. Ann Glaciol 52:23–30CrossRefGoogle Scholar
  31. 31.
    Rogozhina I, Martinec Z, Hagedoorn J et al (2011) On the long-term memory of the Greenland Ice Sheet. J Geophys Res 116:F01011CrossRefGoogle Scholar
  32. 32.
    Bindschadler RA, Nowicki S, Abe-Ouchi A et al (2013) Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea-level (the SeaRISE project). J Glaciol 59:195–224CrossRefGoogle Scholar
  33. 33.
    Reeh N (1991) Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung 59:113–128Google Scholar
  34. 34.
    Blatter H, Greve R, Abe-Ouchi A (2011) Present state and prospects of ice sheet and glacier modelling. Surv Geophys 32:555–583CrossRefGoogle Scholar
  35. 35.
    Greve R (2005) Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet. Ann Glaciol 42:424–432CrossRefGoogle Scholar
  36. 36.
    Marsiat I (1994) Simulation of the northern hemisphere continental ice sheets over the last glacial-interglacial cycle: experiments with a latitude-longitude vertically integrated ice sheet model coupled to a zonally averaged climate model. Paleoclimates 1:59–98Google Scholar
  37. 37.
    Stone E, Lunt D, Rutt I et al (2010) Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change. Cryosphere 4:397–417CrossRefGoogle Scholar
  38. 38.
    Bueler E, Lingle CS, Kallen-Brownet JA et al (2005) Exact solutions and verification of numerical models for isothermal ice sheets. J Glaciol 51:291–306CrossRefGoogle Scholar
  39. 39.
    Sohl LE, Chandler MA, Schmunk RB et al (2009) PRISM3/GISS topographic reconstruction. US Geol Surv Data Series 419Google Scholar
  40. 40.
    Haywood AM, Dowsett HJ, Otto-Bliesner B et al (2010) Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1). Geosci Model Dev 3:227–242CrossRefGoogle Scholar
  41. 41.
    Haywood AM, Dowsett HJ, Robinson MM et al (2011) Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2). Geosci Model Dev 4:571–577CrossRefGoogle Scholar
  42. 42.
    Zhang ZS, Yan Q (2012) Pre-industrial and mid-Pliocene simulations with NorESM-L: AGCM simulations. Geosci Model Dev 5:1033–1043CrossRefGoogle Scholar
  43. 43.
    Zhang ZS, Nisancioglu K, Bentsen M et al (2012) Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci Model Dev 5:523–533CrossRefGoogle Scholar
  44. 44.
    Fausto RS, Ahlstrom AP, Van As D et al (2009) A new present-day temperature parameterization for Greenland. J Glaciol 55:95–105CrossRefGoogle Scholar
  45. 45.
    Ettema J, van den Broeke MR, van Meijgaard E et al (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys Res Lett 36:L12501. doi: 10.1029/2009GL038110 CrossRefGoogle Scholar
  46. 46.
    Dolan AM, Koenig SJ, Hill DJ et al (2012) Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP)—experimental design. Geosci Model Dev 5:963–974CrossRefGoogle Scholar
  47. 47.
    Chen LL, Johannessen OM, Wang HJ et al (2011) Accumulation over the Greenland ice sheet as represented in reanalysis data. Adv Atmos Sci 28:1030–1038CrossRefGoogle Scholar
  48. 48.
    Franco B, Fettweis X, Erpicum M et al (2011) Present and future climates of the Greenland ice sheet according to the IPCC AR4 models. Clim Dyn 36:1897–1918CrossRefGoogle Scholar
  49. 49.
    Jansen E, Fronval T, Rack F et al (2000) Pliocene–Pleistocene ice rafting history and cyclicity in the Nordic Seas during the last 3.5 Ma. Paleoceanography 15:709–721CrossRefGoogle Scholar
  50. 50.
    Bennike O, Abrahamsen N, Bak M et al (2002) A multi-proxy study of Pliocene sediments from Île de France, North-East Greenland. Palaeogeogr Palaeoclimatol Palaeoecol 186:1–23CrossRefGoogle Scholar
  51. 51.
    Funder S, Bennike O, Bocher J et al (2001) Late Pliocene Greenland—The Kap København Formation in North Greenland. Bull Geol Soc Den 48:117–134Google Scholar
  52. 52.
    Willard DA (1994) Palynological record from the North Atlantic region at 3 Ma: vegetational distribution during a period of global warmth. Rev Palaeobot Palynol 83:275–297CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qing Yan
    • 1
    • 2
  • Zhongshi Zhang
    • 1
    • 3
  • Huijun Wang
    • 1
    • 4
  • Ran Zhang
    • 4
  1. 1.Nansen-Zhu International Research Centre, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Bjerknes Centre for Climate Research, UniResearchBergenNorway
  4. 4.Climate Change Research CenterChinese Academy of SciencesBeijingChina

Personalised recommendations