Chinese Science Bulletin

, Volume 58, Issue 18, pp 2154–2162 | Cite as

Molecular phylogenetic evidence that the Chinese viviparid genus Margarya (Gastropoda: Viviparidae) is polyphyletic

  • LiNa Du
  • JunXing Yang
  • Thomas von Rintelen
  • XiaoYong Chen
  • David Aldridge
Open Access
Article Special Issue Adaptive Evolution and Conservation Ecology of Wild Animals


We investigated the phylogeny of the viviparid genus Margarya, endemic to Yunnan, China, using two mitochondrial gene fragments (COI and 16S rRNA). The molecular phylogeny based on the combined dataset indicates that Margarya is polyphyletic, as two of the three well-supported clades containing species of Margarya also comprise species from other viviparid genera. In one clade, sequences of four species of Margarya even cluster indiscriminately with those of two species of Cipangopaludina, indicating that the current state of Asian viviparid taxonomy needs to be revised. Additionally, these data suggest that shell evolution in viviparids is complex, as even the large and strongly sculptured shells of Margarya, which are outstanding among Asian viviparids, can apparently be easily converted to simple smooth shells. The molecular data also indicate that the species status of the six extant species of Margarya should be re-assessed.


Margarya molecular phylogeny polyphyly mtDNA China 


  1. 1.
    Wang L Z. A research of larger invertebrates in Yunnan Dianchi Lake (in Chinese). J Yunnan Univ, 1985, 7(Suppl):73–84Google Scholar
  2. 2.
    Wang L Z. An ecological study on Mollusca population in plateau lakes of Yunnan (in Chinese). J Yunnan Univ, 1988, 10(Suppl), 31:37–43Google Scholar
  3. 3.
    Huang B Y, Zhang L. Freshwater Lamellibranchia from Dianchi, Yunnan. In: Chinese Society of Malacology, ed. Transactions of the Chinese Society of Malacology, No. 2 (in Chinese). Beijing: Science Press, 1986. 171Google Scholar
  4. 4.
    Huang B Y, Zhang L. The distribution and environment of Unionids from Dianchi and Er-hai Lakes in Yunnan Province. In: Chinese Society of Malacology, ed. Transactions of the Chinese Society of Malacology, No. 3 (in Chinese). Beijing: Science Press, 1990. 69–75Google Scholar
  5. 5.
    Yang J X, Chen Y R. The Biology and Resource Utilization of the Fishes of Fuxian Lake, Yunnan (in Chinese). Kunming: Yunnan Science and Technology Press, 1995Google Scholar
  6. 6.
    Zhang N G, Hao T, Wu C Y, et al. A survey of freshwater gastropod in Yunnan (in Chinese). Stud Marin Sin, 1997, 39:15–25Google Scholar
  7. 7.
    Cai Y X, Liang X Q. Descriptions of three new species of freshwater shrimps (Crustacea: Decapoda: Atyidae) from Yunnan, southern China. Raff Bul Zool, 1999, 47:73–80Google Scholar
  8. 8.
    Liang X Q, Cai Y X. Sinodina, a new genus of freshwater shrimps (Crustacea: Decapoda: Atyidae) from southern China, with descriptions of three new species. Raff Bul Zool, 1999, 47:577–590Google Scholar
  9. 9.
    Chen Z M, Yang J X, Su R F, et al. Present status of the indigenous fishes in Dianchi Lake (in Chinese). Yunnan Biod Sci, 2001, 9:407–413Google Scholar
  10. 10.
    Yang L F. The preliminary study on the original classification and distribution law of Lakes on the Yunnan plateau. Trans Oceano Limno, 1984, 1:34–39Google Scholar
  11. 11.
    Ley S H, Yu M J, Li G Z, et al. Limnological survey of the lakes of Yunnan Plateau. Oceanologia et Limnologia Sini, 1963, 5:87–114Google Scholar
  12. 12.
    Tchang S, Tsi C Y. A revision of the genus Margarya of the family Viviparidae. Inst Zool Nat Acad Peiping, 1949, 5:1–25Google Scholar
  13. 13.
    Yen T C. A review of Chinese gastropods in the British museum. Proc Malac Soc London, 1942, 24:170–289Google Scholar
  14. 14.
    Yen T C. A preliminary revision of the recent species of Chinese Viviparidae. The Nautilus, 1943, 56:124–130Google Scholar
  15. 15.
    Annandale N. The evolution of the shell-sculpture in fresh-water snails of the family Viviparidae. Proc R Soc B, 1924, 96:60–76CrossRefGoogle Scholar
  16. 16.
    Tchang S, Xia W P. The regional differences and the sexual dimorphism of two snails, Margarya melanioides Nevill and Margarya monodi Dautzenberg & Fischer, from the west coast of Kunming Lake. Inst Zool Nat Acad Peiping, 1949, 5:67–77Google Scholar
  17. 17.
    Wang S, Xie Y. China Species Red List (Vol. III Invertebrates) (in Chinese). Beijing: Higher Education Press, 2005Google Scholar
  18. 18.
    Tchang S, Cheng C T. Etude sur une paludine comestible, Margarya melanioides, de Tien-Chih. Culture Sino-Francaise, 1945, 1:1–6Google Scholar
  19. 19.
    Liu Y Y, Zhang W Z, Wang Y X. Geographical distribution of family Viviparidae in China. In: Chinese Society of Malacology, ed. Transactions of the Chinese Society of Malacology, 5–6 (in Chinese). Beijing: Ocean Press, 1995. 8–16Google Scholar
  20. 20.
    Zhang N G, Huang B Y, Cheng Y X. Investigation on ancient snail shell mounts along the shores of Dianchi Lake and Yangzonghai Lake (in Chinese). In: Transactions of the Chinese Society of Malacology, 5–6 (in Chinese). Beijing: Ocean Press, 1995. 178–180Google Scholar
  21. 21.
    Shu F Y, Köhler F, Wang H Z. On the shell and radular morphology of two endangered species of the genus Margarya Nevill, 1877 (Gastropoda: Viviparidae) from lakes of the Yunnan plateau, southwest China. Mollusc Res, 2010, 30:17–24Google Scholar
  22. 22.
    Chen Y X, Zhang N G. The karyotype study of Margarya yangtsunghaiensis and M. melanioides (Viviparidae). Zool Res, 1996, 17:94–96Google Scholar
  23. 23.
    Huang X Y, Wang L Z. Analysis of cytochrome oxidase I genes of five species of Margarya and Cipangopaludina chinesis. J Hydroec, 2008, 1:106–108Google Scholar
  24. 24.
    Sengupta M E, Kristensen T K, Madsen H, et al. Molecular phylogenetic investigations of the Viviparidae (Gastropoda: Caenogastropoda) in the lakes of the Rift Valley area of Africa. Mol Phylogenet Evol, 2009, 52:797–805CrossRefGoogle Scholar
  25. 25.
    Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol, 1994, 3:294–299Google Scholar
  26. 26.
    Palumbi S R, Martin A P, Romano S L, et al. The Simple Fool’S Guide to PCR. Hawaii: University of Hawaii, 1991Google Scholar
  27. 27.
    Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25:4876–4882CrossRefGoogle Scholar
  28. 28.
    Xia X, Lemey P. Assessing substitution saturation with DAMBE. In: Lemey P, ed. The Phylogenetic Handbook. Cambridge: Cambridge University Press, 2009. 611–626Google Scholar
  29. 29.
    Farris J S, Kallersjo M, Kluge A G, et al. Testing significance of incongruence. Cladistics, 1994, 10:315–319CrossRefGoogle Scholar
  30. 30.
    Swofford D L. PAUP*: Phylogenetic analysis using parsimony (*and Other Methods), Version 4.0. Sinauer Associates, Sunderland, MA. 2002Google Scholar
  31. 31.
    Akaike H. Information theory as an extension of the maximum likelihood principle. In: Petrov B N, Csaki F, eds. Second International Symposium on Information Theory. Budapest: Akademiai Kiado, 1973. 267–281Google Scholar
  32. 32.
    Posada D, Crandall K A. Modeltest: Testing the model of DNA substitution. Bioinformatics, 1998, 14:817–818CrossRefGoogle Scholar
  33. 33.
    Felsenstein J P. Confidence limits on phylogenies: An approach using the bootstrap. Evol, 1985, 39:783–791CrossRefGoogle Scholar
  34. 34.
    Huelsenbeck J P, Bollback J P. Empirical and hierarchical Bayesian estimation of ancestral states. Syst Biol, 2001, 50:351–366CrossRefGoogle Scholar
  35. 35.
    Leaché A D, Reeder T W. Molecular systematics of the eastern fence lizard (Sceloporus undulates): A comparison of parsimony, likelihood, and Bayesian approaches. Syst Biol, 2002, 51:44–68CrossRefGoogle Scholar
  36. 36.
    Huelsenbeck J P, Ronquist F. MrBayes: Bayesian inference of phylogeny. Bioinformatics, 2001, 17:754–755CrossRefGoogle Scholar
  37. 37.
    Rambaut A, Drummond A J. Tracer version 1.0.0. model of DNA substitution. Bioinformatics, 2003, 14:817–818Google Scholar
  38. 38.
    Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Bioinformatics, 2004, 5:150–163Google Scholar
  39. 39.
    Rao H S. On the comparative anatomy of oriental Viviparidae. Rec Indian Mus, 1925, 27:129–135Google Scholar
  40. 40.
    Palmer A R. Quantum changes in gastropod shell morphology need not reflect speciation. Evolution, 1985, 39:699–705CrossRefGoogle Scholar
  41. 41.
    Trussell G C, Smith C D. Induced defenses in response to an invading crab predator: An explanation of historical and geographic phenotypic change. Proc Nat Acad Sci USA, 2000, 97:2123–2127CrossRefGoogle Scholar
  42. 42.
    Taki I. Anatomical study of Cipangopaludina migagii, Kuroda. Venus, 1941, 16:131–134Google Scholar
  43. 43.
    Funk D J, Omland K E. Species-level paraphyly and polyfyly: Frequency, causes and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Syst, 2003, 34:397–423CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of ZoologyChinese Academy of SciencesKunmingChina
  2. 2.Museum für NaturkundeLeibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu BerlinBerlinGermany
  3. 3.Aquatic Ecology Group, Department of ZoologyCambridge UniversityCambridgeUK

Personalised recommendations