Chinese Science Bulletin

, Volume 58, Issue 9, pp 1053–1059 | Cite as

Solar influenced late Holocene temperature changes on the northern Tibetan Plateau

  • YuXin He
  • WeiGuo Liu
  • Cheng Zhao
  • Zheng Wang
  • HuanYe Wang
  • Yi Liu
  • XianYan Qin
  • QiHou Hu
  • ZhiSheng An
  • ZhongHui Liu
Open Access
Article Geography

Abstract

Considerable efforts have been made to extend temperature records beyond the instrumental period through proxy reconstructions, in order to further understand the mechanisms of past climate variability. Yet, the global coverage of existing temperature records is still limited, especially for some key regions like the Tibetan Plateau and for earlier times including the Medieval Warm Period (MWP). Here we present decadally-resolved, alkenone-based, temperature records from two lakes on the northern Tibetan Plateau. Characterized by marked temperature variability, our records provide evidence that temperatures during the MWP were slightly higher than the modern period in this region. Further, our temperature reconstructions, within age uncertainty, can be well correlated with solar irradiance changes, suggesting a possible link between solar forcing and natural climate variability, at least on the northern Tibetan Plateau.

Keywords

northern Tibetan Plateau alkenones U37k′ late Holocene 

References

  1. 1.
    Buntgen U, Tggel W, Nicolussi K, et al. 2500 years of European climate variability and human susceptibility. Science, 2011, 331: 578–582CrossRefGoogle Scholar
  2. 2.
    Crowley T J. Causes of climate change over the past 1000 years. Science, 2000, 289: 270–277CrossRefGoogle Scholar
  3. 3.
    Dai Y, Zhang Y, Ge J Y. Decadal-scale variability of warm season temperature in Beijing over the past 2650 years. Chin Sci Bull, 2011, 56: 2366–2370CrossRefGoogle Scholar
  4. 4.
    Esper J, Cook E R, Schweingruber F H. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 2002, 295: 2250–2253CrossRefGoogle Scholar
  5. 5.
    Ge Q S, Zhang X Z, Hao Z X, et al. Rates of temperature change in China during the past 2000 years. Sci China Earth Sci, 2011, 54: 1627–16Google Scholar
  6. 6.
    Liu Y, Cai Q F, Song H M, et al. Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau. Chin Sci Bull, 2011, 56: 2986–2994CrossRefGoogle Scholar
  7. 7.
    Mann M E, Jones P D. Global surface temperatures over the past two millennia. Geophys Res Lett, 2003, 30: 1820CrossRefGoogle Scholar
  8. 8.
    Mann M E, Zhang Z, Rutherford S, et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 2009, 326: 1256–1260CrossRefGoogle Scholar
  9. 9.
    Moberg A, Sonechkin D M, Holmgren K, et al. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 2005, 433: 613–617CrossRefGoogle Scholar
  10. 10.
    Oppo D W, Rosenthal Y, Linsley B K. 2000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature, 2009, 460: 1113–1116CrossRefGoogle Scholar
  11. 11.
    Qiang M R, Chen F H, Zhang J W, et al. Climatic changes documented by stable isotopes of sedimentary carbonate in Lake Sugan, northeastern Tibetan Plateau of China, since 2 ka BP (in Chinese). Chin Sci Bull (Chin Ver), 2005, 50: 1930–1939CrossRefGoogle Scholar
  12. 12.
    Yang B, Achim B, Shi Y F. Late Holocene temperature fluctuations on the Tibetan Plateau. Quat Sci Rev, 2003, 22: 2335–2344CrossRefGoogle Scholar
  13. 13.
    Zhu H F, Zheng Y H, Shao X M, et al. Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan, Qinghai Province, China. Chin Sci Bull, 2008, 53: 3914–3920CrossRefGoogle Scholar
  14. 14.
    Magny M, Arnaud F, Holzhauser H, et al. Solar and proxy-sensitivity imprints on paleohydrological records for the last millennium in west-central Europe. Quat Res, 2010, 73: 173–179CrossRefGoogle Scholar
  15. 15.
    Shindell D T, Schmidt G A, Mann M E, et al. Solar forcing of regional climate change during the Maunder Minimum. Science, 2001, 294: 2149–2152CrossRefGoogle Scholar
  16. 16.
    Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: links to solar changes and north Atlantic climate. Science, 2005, 308: 854–857CrossRefGoogle Scholar
  17. 17.
    Waple A M, Mann M E, Bradley R S. Long-term patterns of solar irradiance forcing in model experiments and proxy based surface temperature reconstructions. Clim Dyn, 2002, 18: 563–578Google Scholar
  18. 18.
    Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 2008, 322: 940–942CrossRefGoogle Scholar
  19. 19.
    Zhao C, Yu Z C, Zhao Y, et al. Possible orographic and solar controls of Late Holocene centennial-scale moisture oscillations in the northeastern Tibetan Plateau. Geophys Res Lett, 2009, 36: L21705CrossRefGoogle Scholar
  20. 20.
    Jones P D, Briffa K R, Osborn T J, et al. High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. The Holocene, 2009, 19: 3–49CrossRefGoogle Scholar
  21. 21.
    von Storch H, Zorita E, Jones J M, et al. Reconstructing past climate from noisy data. Science, 2004, 306: 679–682CrossRefGoogle Scholar
  22. 22.
    Chen F H, Chen J H, Holmes J, et al. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat Sci Rev, 2010, 29: 1055–1068CrossRefGoogle Scholar
  23. 23.
    Ding Q H, Wang B. Circumglobal teleconnection in the Northern Hemisphere summer. J Clim, 2005, 18: 3483–3505CrossRefGoogle Scholar
  24. 24.
    Ge Q S, Zheng J Y, Hao Z X, et al. Temperature variation through 2000 years in China: An uncertainty analysis of reconstruction and regional difference. Geophys Res Lett, 2010, 37: L03703CrossRefGoogle Scholar
  25. 25.
    Yang B, Tang L Y, Li C H, et al. An ice-core record of vegetation and climate changes in the central Tibetan Plateau during the last 550 years. Chin Sci Bull, 2010, 55: 1167–1177Google Scholar
  26. 26.
    Zhang D E. Winter temperature changes during the last 500 years in south China (in Chinese). Chin Sci Bull (Chin Ver), 1980, 25: 497–500Google Scholar
  27. 27.
    Tian L, Masson-Delmotte V, Stievenard M, et al. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res, 2001, 106: 28081–28088CrossRefGoogle Scholar
  28. 28.
    Stuiver M, Reimer P J. Extended 14C data-base and revised Calib 3.0 14C age calibration program. Radiocarbon, 1993, 35: 215–230Google Scholar
  29. 29.
    Hou J Z, D’Andrea W J, Liu Z H. The influence of 14C reservoir age on interpretation of paleolimnological records fron the Tibetan Plateau. Quat Sci Rev, 2012, 48: 67–79CrossRefGoogle Scholar
  30. 30.
    Liu W G, Liu Z H, Wang H Y, et al. Salinity control on long-chain alkenone distributions in lake surface waters and sediments of the northern Qinghai-Tibetan Plateau, China. Geochim Cosmochim Acta, 2011, 75: 1693–1703CrossRefGoogle Scholar
  31. 31.
    Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim Cosmochim Acta, 1998, 52: 2303–2310CrossRefGoogle Scholar
  32. 32.
    Sun Q, Chu G Q, Liu G X, et al. Calibration of alkenone unsaturation index with growth temperature for a lacustrine species, Chrysotila lamellosa (Haptophyceae). Org Geochem, 2007, 38: 1226–1234CrossRefGoogle Scholar
  33. 33.
    Lamb H H. Climatic History and The Future. Princeton: Princeton University Press, 1985Google Scholar
  34. 34.
    Liu Z H, Henderson A C G, Huang Y S. Alkenone-based reconstruction of Late-Holocene surface temperature and salinity changes in Lake Qinghai, China. Geophys Res Lett, 2006, 33: L09707CrossRefGoogle Scholar
  35. 35.
    Liu Y, An Z S, Linderholm H W, et al. Annual temperatures during the last 2485 years in the mid-eastern tibetan plateau inferred from tree rings. Sci China Ser D-Earth Sci, 2009, 52: 348–359CrossRefGoogle Scholar
  36. 36.
    Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy: A new tool for climatic assessment. Nature, 1986, 320: 129–133CrossRefGoogle Scholar
  37. 37.
    Chu G Q, Sun Q, Li S Q, et al. Long-chain alkenone distributions and temperature dependence in lacustrine surface sediments from China. Geochim Cosmochim Acta, 2005, 69: 4985–5003CrossRefGoogle Scholar
  38. 38.
    D’Andrea W J, Huang Y S. Long chain alkenones in Greenland lake sediments: Low delta C-13 values and exceptional abundance. Org Geochem, 2005, 36: 1234–1241CrossRefGoogle Scholar
  39. 39.
    D’Andrea W J, Huang Y S, Fritz S C, et al. Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proc Natl Acad Sci USA, 2011, 108: 9765–9769CrossRefGoogle Scholar
  40. 40.
    Liu W G, Liu Z H, Fu M Y, et al. Distribution of the C37 tetra-unsaturated alkenone in Lake Qinghai, China: A potential lake salinity indicator. Geochim Cosmochim Acta, 2008, 72: 988–997CrossRefGoogle Scholar
  41. 41.
    Pearson E J, Juggins S, Farrimond P. Distribution and significance of long-chain alkenones as salinity and temperature indicators in Spanish saline lake sediments. Geochim Cosmochim Acta, 2008, 72: 4035–4046CrossRefGoogle Scholar
  42. 42.
    Sheng G Y, Cai K Q, Yang X X, et al. Long-chain alkenones in Hotong Qagan Nur Lake sediments and its paleoclimatic implications. Chin Sci Bull, 1999, 44: 259–263CrossRefGoogle Scholar
  43. 43.
    Toney J L, Huang Y S, Fritz S C, et al. Climatic and environmental controls on the occurrence and distributions of long chain alkenones in lakes of the interior United States. Geochim Cosmochim Acta, 2010, 74: 1563–1578CrossRefGoogle Scholar
  44. 44.
    Toney J L, Theroux S, Andersen R A, et al. Culturing of the first 37:4 predominant lacustrine haptophyte: Geochemical, biochemical, and genetic implications. Geochim Cosmochim Acta, 2012, 78: 51–64CrossRefGoogle Scholar
  45. 45.
    Zink K G, Leythaeuser D, Melkonian M, et al. Temperature dependency of long-chain alkenone distributions in Recent to fossil limnic sediments and in lake waters. Geochim Cosmochim Acta, 2011, 65: 253–265CrossRefGoogle Scholar
  46. 46.
    Kang X C, Grumlich L J, Sheppard P R. A 1835-yr tree-ring chronology and its preliminary analysis in Dulan region, Qinghai (in Chinese). Chin Sci Bull (Chin Ver), 1997, 42: 1089–1091Google Scholar
  47. 47.
    Kobashi T, Kawamura K, Severinghaus J P, et al. High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core, Geophys Res Lett, 2011, 38: L21501CrossRefGoogle Scholar
  48. 48.
    Trouet V, Esper J, Graham N E, et al. Persistent positive north atlantic oscillation mode dominated the medieval climate anomaly. Science, 2009, 324: 78–80CrossRefGoogle Scholar
  49. 49.
    Yan H, Sun L G, Wang Y H, et al. A record of the Southern Oscillation Index for the past 2000 years from precipitation proxies. Nat Geosci, 2011, 4: 611–614CrossRefGoogle Scholar
  50. 50.
    Mann M E, Cane M A, Zebiak, et al. Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Clim, 2005, 18: 447–456CrossRefGoogle Scholar
  51. 51.
    Bard E, Raisbeck G, Yiou F, et al. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B, 2000, 52: 985–992CrossRefGoogle Scholar
  52. 52.
    Reimer P J, Baillie M G L, Bard E, et al. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal ka BP. Radiocarbon, 2004, 46: 1029–1058Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • YuXin He
    • 1
  • WeiGuo Liu
    • 2
  • Cheng Zhao
    • 1
  • Zheng Wang
    • 2
  • HuanYe Wang
    • 2
  • Yi Liu
    • 3
  • XianYan Qin
    • 3
  • QiHou Hu
    • 3
  • ZhiSheng An
    • 2
  • ZhongHui Liu
    • 1
  1. 1.Department of Earth Sciences, The University of Hong KongHong Kong Special Administrative RegionHong KongChina
  2. 2.State Key Laboratory of Loess and Quaternary Geology, Institude of Earth EnvironmentChinese Academy of SciencesXi’anChina
  3. 3.Institute of Polar Environment, School of Earth and Space SciencesUniversity of Science & Technology, ChinaHefeiChina

Personalised recommendations