Advertisement

Chinese Science Bulletin

, Volume 57, Issue 36, pp 4801–4804 | Cite as

Chemical composition dependence of atomic oxygen erosion resistance in Cu-rich bulk metallic glasses

  • Xin Wang
  • Yang Shao
  • Ke-Fu Yao
Open Access
Article Materials Science

Abstract

The effect of atomic oxygen (AO) on the surface oxidation of several typical Cu-based bulk metallic glasses (BMGs) was studied in the present work. The AO source using in this study is generated by discharge plasma type ground simulation equipment. The AO erosion/oxidation resistances of the amorphous alloy samples were assessed based on the analysis of mass loss, surface color and microstructure. It is found that these Cu-based BMGs possess good AO erosion/oxidation resistance and their resistance to AO erosion/oxidation strongly depends on the chemical composition. For the samples containing more Ag and/or Cu, the AO erosion/oxidation resistance is weaker. The present result is important for designing new metallic glasses using as space materials.

Keywords

bulk metallic glass atomic oxygen erosion low earth orbit oxidation 

References

  1. 1.
    Packirisamy S, Schwam D, Litt M H. Atomic oxygen resistant coatings for low earth orbit space structures. J Mater Sci, 1995, 30: 308–320CrossRefGoogle Scholar
  2. 2.
    Reddy M R. Effect of low Earth orbit atomic oxygen on spacecraft materials. J Mater Sci, 1995, 30: 281–307CrossRefGoogle Scholar
  3. 3.
    Miyazaki E, Tagawa M, Yokota K, et al. Investigation into tolerance of polysiloxane-block-polyimide film against atomic oxygen. Acta Astronaut, 2010, 66: 922–928CrossRefGoogle Scholar
  4. 4.
    Hu L, Li M, Xu C, et al. Perhydropolysilazane derived silica coating protecting kapton from atomic oxygen attack. Thin Solid Films, 2011, 520: 1063–1068CrossRefGoogle Scholar
  5. 5.
    Huang Y, Tian X, Lv S, et al. An undercutting model of atomic oxygen for multilayer silica/alumina films fabricated by plasma immersion implantation and deposition on polyimide. Appl Surf Sci, 2011, 257: 9158–9163CrossRefGoogle Scholar
  6. 6.
    Li L, Yang J C, Minton T K. Morphological changes at a silver surface resulting from exposure to hyperthermal atomic oxygen. J Phys Chem C, 2007, 111: 6763–6771CrossRefGoogle Scholar
  7. 7.
    Aoki Y, Fujii H, Nogi K. Effect of atomic oxygen exposure on bubble formation in aluminum alloy. J Mater Sci, 2004, 39: 1779–1783CrossRefGoogle Scholar
  8. 8.
    Raspopov S A, Gusakov A G, Voropayev A G, et al. Interaction of titanium with atomic and molecular oxygen. J Chem Soc, Faraday Trans, 1996, 92: 2775–2778CrossRefGoogle Scholar
  9. 9.
    Srinivasan S G, van Duin A C T. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the reaxff reactive force field. J Phys Chem A, 2011, 115: 13269–13280CrossRefGoogle Scholar
  10. 10.
    Zhang T, Yang Q, Ji Y, et al. Centimeter-scale-diameter Co-based bulk metallic glasses with fracture strength exceeding 5000 MPa. Chin Sci Bull, 2011, 56: 3972–3977CrossRefGoogle Scholar
  11. 11.
    Schuh C A, Hufnagel T C, Ramamurty U. Overview no.144-mechanical behavior of amorphous alloys. Acta Mater, 2007, 55: 4067–4109CrossRefGoogle Scholar
  12. 12.
    Wang W H, Dong C, Shek C H. Bulk metallic glasses. Mater Sci Eng R-Rep, 2004, 44: 45–89CrossRefGoogle Scholar
  13. 13.
    Qiu S B, Yao K F, Gong P. Effects of crystallization fractions on mechanical properties of Zr-based metallic glass matrix composites. Sci China Phys Mech Astron, 2010, 53: 424–429CrossRefGoogle Scholar
  14. 14.
    Qiu S B, Yao K F, Gong P. Work toughening effect in Zr41Ti14Cu12.5-Ni10Be22.5 bulk metallic glass. Chin Sci Bull, 2011, 56: 3942–3947CrossRefGoogle Scholar
  15. 15.
    Li G, Huang L, Dong Y, et al. Corrosion behavior of bulk metallic glasses in different aqueous solutions. Sci China Phys Mech Astron, 2010, 53: 435–439CrossRefGoogle Scholar
  16. 16.
    Xie K F, Yao K F, Huang T Y. A Ti-based bulk glassy alloy with high strength and good glass forming ability. Intermetallics, 2010, 18: 1837–1841CrossRefGoogle Scholar
  17. 17.
    Yao K F, Ruan F, Yang Y Q, et al. Superductile bulk metallic glass. Appl Phys Lett, 2006, 88: 1221106Google Scholar
  18. 18.
    He Q, Cheng Y Q, Ma E, et al. Locating bulk metallic glasses with high fracture toughness chemical effects and composition optimization. Acta Mater, 2011, 59: 202–215CrossRefGoogle Scholar
  19. 19.
    Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 2008, 451: 1083–1085CrossRefGoogle Scholar
  20. 20.
    Wang A, Zhang M, Zhang J, et al. Effect of Ni addition on the glass-forming ability and soft-magnetic properties of FeNiBPNb metallic glasses. Chin Sci Bull, 2011, 56: 3932–3936CrossRefGoogle Scholar
  21. 21.
    Hui X, Xu Z, Wu Y, et al. Magnetocaloric effect in Er-Al-Co bulk metallic glasses. Chin Sci Bull, 2011, 56: 3978–3983CrossRefGoogle Scholar
  22. 22.
    Li Q, Li M. Rethinking atomic packing and cluster formation in metallic liquids and glasses. Chin Sci Bull, 2011, 56: 3897–3901CrossRefGoogle Scholar
  23. 23.
    Li F, Qiang J, Wang Y, et al. Revisiting Al-Ni-Zr bulk metallic glasses using the “cluster-resonance” model. Chin Sci Bull, 2011, 56: 3902–3907CrossRefGoogle Scholar
  24. 24.
    Lue X, Bian X, Xiang N, et al. Correlation between liquid structure and glass forming ability in glassy Ag-based binary alloys. Sci China Phys Mech Astron, 2010, 53: 399–404CrossRefGoogle Scholar
  25. 25.
    Zhou W, Lu B, Kong L, et al. Rolling-induced microstructure change in Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Chin Sci Bull, 2011, 56: 3948–3951CrossRefGoogle Scholar
  26. 26.
    Zhang W, Zhang Q S, Inoue A. Fabrication of Cu-Zr-Ag-Al glassy alloy samples with a diameter of 20 mm by water quenching. J Mater Res, 2008, 23: 1452–1456CrossRefGoogle Scholar
  27. 27.
    Dai C L, Guo H, Shen Y, et al. A new centimeter-diameter Cu-based bulk metallic glass. Scripta Mater, 2006, 54: 1403–1408CrossRefGoogle Scholar
  28. 28.
    Zhang W, Zhang Q S, Inoue A. Synthesis and mechanical properties of new Cu-Zr-based glassy alloys with high glass-forming ability. Adv Eng Mater, 2008, 10: 1034–1038CrossRefGoogle Scholar
  29. 29.
    Wang D, Tan H, Li Y. Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy system-A metallographic way to pinpoint the best glass forming alloys. Acta Mater, 2005, 53: 2969–2979CrossRefGoogle Scholar
  30. 30.
    Peker A, Johnson W L. A highly processable metallic glass: Zr41.2-Ti13.8Cu12.5Ni10.0Be22.5. Appl Phys Lett, 1993, 63: 2342–2344CrossRefGoogle Scholar
  31. 31.
    Zhao X H, Shen Z G, Xing Y S, et al. A study of the reaction characteristics and mechanism of kapton in a plasma-type ground-ased atomic oxygen effects simulation facility. J Phys D Appl Phys, 2001, 34: 2308–2314CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations