Chinese Science Bulletin

, Volume 58, Issue 6, pp 641–648 | Cite as

Development of DArT markers for a linkage map of flue-cured tobacco

  • XiuPing Lu
  • YiJie Gui
  • BingGuang Xiao
  • YongPing Li
  • ZhiJun Tong
  • Yun Liu
  • XueFei Bai
  • WeiRen Wu
  • Ling Xia
  • Eric Huttner
  • Adrzej Kilian
  • LongJiang Fan
Open Access
Article Agricultural Sciences

Abstract

Tobacco (Nicotiana tabacum) is one of the most economically important nonfood crops, and flue-cured tobacco accounts for approximately 80% of world tobacco production. An extremely narrow genetic diversity in the tobacco pool has led to a low efficiency of PCR-based molecular markers (such as AFLP and SSR). Diversity Arrays Technology (DArT) is a high-throughput hybridisation-based marker system that has been developed in many plants including wheat, which, like tobacco, has a complex genome. In this study, we developed a tobacco DArT chip that included 7680 representative sequence tags based on typical tobacco accessions. The 1076 DArT markers of flue-cured tobacco were identified and most (82.1%) of their polymorphism information contents (PICs) were greater than 0.4. An integrated linkage map that included 851 markers (238 DArT and 613 SSR), which is the highest density map of flue-cured tobacco to date, was constructed. This chip-based DArT system provides an alternative in high-throughput marker genotyping for tobacco.

Keywords

Nicotiana tabacum diversity arrays technology (DArT) linkage map DH population molecular marker 

References

  1. 1.
    Moon H S, Nicholson J S, Heineman A, et al. Changes in genetic diversity of U.S. flue-cured tobacco germplasm over seven decades of cultivar development. Crop Sci, 2009, 49: 498–508CrossRefGoogle Scholar
  2. 2.
    Moon H S, Nifong J M, Nicholson J S, et al. Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci, 2009, 49: 2149–2159CrossRefGoogle Scholar
  3. 3.
    Zhang H Y, Liu X Z, Li T S, et al. Genetic diversity among flue-cured tobacco (Nicotiana tabacum L.) revealed by amplified fragment length polymorphism. Bot Stud, 2006, 47: 223–229Google Scholar
  4. 4.
    Yang B C, Xiao B G, Chen X J, et al. Assessing the genetic diversity of tobacco germplasm using intersimple sequence repeat and inter-retrotransposon amplification polymorphism markers. Annu Appl Biol, 2007, 150: 393–401CrossRefGoogle Scholar
  5. 5.
    Botstein D, White R L, Skolnick M, et al. Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. Am J Human Genet, 1980, 32: 314–331Google Scholar
  6. 6.
    Coussirat J C. Genetic diversity and varietal identification in Nicotiana tabacum with RAPD markers. Annual du Tabac Section, 1994Google Scholar
  7. 7.
    Bai D, Reeleder R, Brandle J E. Identification of two RAPD markers tightly linked with the Nicotiana debneyi gene for resistance to black root rot of tobacco. Theor Appl Genet, 1995, 91: 1184–1189CrossRefGoogle Scholar
  8. 8.
    Lin T Y, Kao Y Y, Lin S, et al. A genetic linkage map of Nicotiana plumbaginifolia/Nicotiana longiflora based on RFLP and RAPD markers. Theor Appl Genet, 2001, 103: 905–911CrossRefGoogle Scholar
  9. 9.
    Ren N, Timko M P. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild nicotiana species. Genome, 2001, 44: 559–571Google Scholar
  10. 10.
    Johnson E S, Wolff M F, Wernsman E A, et al. Marker-assisted selection for resistance to black shank disease in tobacco. Plant Dis, 2002, 86: 1303–1309CrossRefGoogle Scholar
  11. 11.
    Lewis R S, Milla S R, Levin J S. Molecular and genetic characterization of Nicotiana tabacum L. Chromosome segments in tobacco mosaic virus-resistant tobacco accessions. Crop Sci, 2005, 45: 2355–2362CrossRefGoogle Scholar
  12. 12.
    Julio E, Verrier J L, de Borne F D. Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet, 2006, 112: 335–346CrossRefGoogle Scholar
  13. 13.
    Moon H, Nicholson J S. AFLP and SCAR markers linked to tomato spotted wilt virus resistance in tobacco. Crop Sci, 2007, 47: 1887–1894CrossRefGoogle Scholar
  14. 14.
    Bindler G, van der Hoeven R, Gunduz I, et al. A microsatellite marker based linkage map of tobacco. Theor Appl Genet, 2007, 114: 341–349CrossRefGoogle Scholar
  15. 15.
    Bindler G, Plieske J, Bakaher N, et al. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large-scale microsatellite marker development. Theor Appl Genet, 2011, 123: 219–230CrossRefGoogle Scholar
  16. 16.
    Gui Y J, Yan G H, Bo S P, et al. iSNAP: A small RNA-based molecular marker technique. Plant Breed, 2011, 130: 515–520CrossRefGoogle Scholar
  17. 17.
    Xiao B G, Xu Z L, Chen X J, et al. Genetic linkage map constructed by using a DH population for flue-cured tobacco. Acta Tabacaria Sin, 2006, 35–40Google Scholar
  18. 18.
    Jaccoud D, Peng K M, Feinstein D, et al. Diversity arrays: A solid state technology for sequence information independent genotyping. Nucleic Acids Res, 2001, 29: 7CrossRefGoogle Scholar
  19. 19.
    Wenzl P, Carling J, Kudrna D, et al. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA, 2004, 101: 9915–9920CrossRefGoogle Scholar
  20. 20.
    Akbari M, Wenzl P, Caig V, et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet, 2006, 113: 1409–1420CrossRefGoogle Scholar
  21. 21.
    Tinker N A, Kilian A, Wight C P, et al. New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics, 2009, 10: 39CrossRefGoogle Scholar
  22. 22.
    Alsop B P, Farre A, Wenzl P, et al. Development of wild barley-derived DArT markers and their integration into a barley consensus map. Mol Breed, 2011, 27: 77–92CrossRefGoogle Scholar
  23. 23.
    Sambrook J, Russell D W. Molecular Cloning: A Laboratory Manual (Chinese version translated by Huang P T). 3rd Ed. Beijing: Science Press, 2001. 547–610Google Scholar
  24. 24.
    Xia L, Peng K M, Yang S Y, et al. DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet, 2005, 110: 1092–1098CrossRefGoogle Scholar
  25. 25.
    Bezdek J C, Ehrlich R, Full W. FCM-The fuzzy C-means clustering-algorithm. Comp Geosci, 1984, 10: 191–203CrossRefGoogle Scholar
  26. 26.
    Rohlf F J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. New York: Exeter Software, 2000Google Scholar
  27. 27.
    Van Ooijen J W. Joinmap® 4, Software for The Calculation of Genetic Linkage Maps in Experimental Population. Wageningen: Kyazma B V, 2006Google Scholar
  28. 28.
    Mace E S, Xia L, Jordan D R, et al. DArT markers: Diversity analyses and mapping in sorghum bicolor. BMC Genomics, 2008, 9: 26CrossRefGoogle Scholar
  29. 29.
    Hearnden P R, Eckermann P J, McMichael G L, et al. A genetic map of 1000 SSR and DArT markers in a wide barley cross. Theor Appl Genet, 2007, 115: 383–391CrossRefGoogle Scholar
  30. 30.
    Opperman C H, Lommel S A. The Tobacco Genome Initiative: Gene discovery and data mining in Nicotiana tabacum. Plant & Animal Genomes XI Conference, San Diego, CA, 2007Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • XiuPing Lu
    • 1
    • 2
  • YiJie Gui
    • 1
  • BingGuang Xiao
    • 2
  • YongPing Li
    • 2
  • ZhiJun Tong
    • 1
  • Yun Liu
    • 1
  • XueFei Bai
    • 1
  • WeiRen Wu
    • 1
  • Ling Xia
    • 3
  • Eric Huttner
    • 3
  • Adrzej Kilian
    • 3
  • LongJiang Fan
    • 1
  1. 1.Department of AgronomyZhejiang UniversityHangzhouChina
  2. 2.Yunnan Academy of Tobacco Agricultural Sciences and China Tobacco Breeding Research Center at YunnanYuxiChina
  3. 3.DArT P/LYarralumlaAustralia

Personalised recommendations