Chinese Science Bulletin

, Volume 57, Issue 32, pp 4181–4187

Ce-doped LiNi1/3Co(1/3−x/3)Mn1/3Cex/3O2 cathode materials for use in lithium ion batteries

  • YingJie Zhang
  • ShuBiao Xia
  • YanNan Zhang
  • Peng Dong
  • YuXing Yan
  • RuiMing Yang
Open Access
Article Special Issue: New Energy Materials


LiNi1/3Co1/3Mn1/3O2 and Ce-doped LiNi1/3Co1/3Mn1/3O2 cathode materials were synthesized by a co-precipitation method and solid phase synthesis and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the resultant cathode materials with different Ce content all had a good layer structure and high crystallinity. Electrochemical performance testing of the cathode materials showed that the discharge capacity increased with increasing Ce content while the initial reversible capacity attenuation decreased with Ce doping. When the Ce content of the cathode materials is x=0.2, and the current charge and discharge rate is a constant 0.2 C, the discharge capacity maintained 91% of its initial capacity after cycling 50 times.


lithium ion batteries cathode materials LiNi1/3Co1/3Mn1/3O2 


  1. 1.
    Bandhauer T M, Garimella S, Fuller T F. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc, 2011, 158: R1–R25CrossRefGoogle Scholar
  2. 2.
    Choi N S, Lee Y, Kim S S. Improving the electrochemical properties of graphite/LiCoO2 cells in ionic liquid-containing electrolytes. J Power Sources, 2010, 195: 2368–2371CrossRefGoogle Scholar
  3. 3.
    Fergus J W. Recent developments in cathode materials for lithium ion batteries. J Power Sources, 2010, 195: 939–954CrossRefGoogle Scholar
  4. 4.
    Lu D S, Li W S, Zuo X X. Study on electrode kinetics of Li+ insertion in LixMn2O4 (0⩽x⩽1) by electrochemical impedance spectroscopy. J Phys Chem C, 2007, 111: 12067–12074CrossRefGoogle Scholar
  5. 5.
    Piana M, Cushing B L, Goodenough J B. A new promising sol-gel synthesis of phospho-olivines as environmentally friendly cathode materials for Li-ion cells. Solid State Ionics, 2004, 175: 233–237CrossRefGoogle Scholar
  6. 6.
    Zhang D Y, Zhang P X, Lin M C. Property and structure of carbon-coated LiFePO4. J Inorg Mater M, 2011, 26: 265–270Google Scholar
  7. 7.
    Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188–1194CrossRefGoogle Scholar
  8. 8.
    Naoaki Y, Tsutomu O. Novel lithium insertion material of LiCo1/3-Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources, 2003, 121: 171–174CrossRefGoogle Scholar
  9. 9.
    Ohzuku T, Makimura Y. Layered lithium insertion material of Li-Co1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett, 2001, 30: 642–643CrossRefGoogle Scholar
  10. 10.
    Li D C, Kato Y, Kobayakawa K, et al. Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating. J Power Sources, 2006, 160: 1342–1348CrossRefGoogle Scholar
  11. 11.
    Ye N Q, Liu C J, Shen S Y. Drawbacks and improve ways of LiNiO2 as a cathode material for lithium ion batteries. J Inorg Mater, 2004, 19: 1217–1224Google Scholar
  12. 12.
    Song X L, Qiu G Z, Qu P. Synthesis and performance of CeO2 nanocrystallines by precipitation method. J Hunan Univ (Nat Sci), 2004, 31: 13–17Google Scholar
  13. 13.
    Ha H W, Yun N J, Kim M H, et al. Enhanced electrochemical and thermal stability of surface-modified LiCoO2 cathode by CeO2 coating. Electrochim Acta, 2006, 51: 3297–3302CrossRefGoogle Scholar
  14. 14.
    Ha H W, Yun N J, Kim K. Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries. Electrochim Acta, 2007, 52: 3236–3241CrossRefGoogle Scholar
  15. 15.
    Wang M, Wu F, Su Y F. Coating-CeO2 for LiMn1/3Co1/3Ni1/3O2 of Li-ion battery cathode material. Sci China Ser E, 2009, 39: 809–813Google Scholar
  16. 16.
    Ohzuku T, Ueda A, Nagayama M, et al. Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4-volt secondary lithium cells. Electrochim Acta, 1993, 38: 1159–1167CrossRefGoogle Scholar
  17. 17.
    Zhu X H, Chen N, Lian F. First principle calculation of lithiation/delithiation voltage in Li-ion battery materials. Chin Sci Bull, 2011, 56: 3229–3232CrossRefGoogle Scholar
  18. 18.
    Cheng J M, Chob Y D, Hsiao C L, et al. Electrochemical studies on LiCoO2 surface coated with Y3Al5O12 for lithium-ion cells. J Power Sources, 2009, 189: 279–287CrossRefGoogle Scholar
  19. 19.
    Naoaki Y, Kazuhiro Y, Seung-Taek M, et al. Detail studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc, 2011, 13: 4414–4419Google Scholar
  20. 20.
    Chen Y C, Xu X J, Cui H Z. Preferred orientation of crystals and the intensity ratios of XRD peaks of cathode material LiCoO2. Acta Phys-Chim Sin, 2007, 23: 1948–1953Google Scholar
  21. 21.
    Naoaki Y, Tsutomu O. Novel lithium insertion material of LiCo1/3-Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources, 2003, 121: 171–174CrossRefGoogle Scholar
  22. 22.
    Shaju K M, Subba R G V, Chowdari B V R. Performance of layered LiNi1/3Co1/3Mn1/3O2 as cathode for Li-ion batteries. Electrochim Acta, 2002, 48: 145–151CrossRefGoogle Scholar
  23. 23.
    Hwang B J, Tsai Y W, Ceder G. A combined computation experimental study on LiNi1/3Co1/3Mn1/3O2. Chem Mater, 2003, 15: 3676–3682CrossRefGoogle Scholar
  24. 24.
    Tsai Y W, Hwang B J, Ceder G. In-situ X-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling. Chem Mater, 2005, 17: 3191–3199CrossRefGoogle Scholar
  25. 25.
    Xiong X Q, Jiang Y, Xia S A, et al. Synthesis and modification of well-ordered layered cathode oxide LiNi2/3Mn1/3O2. Chin Sci Bull, 2010, 55: 2520–2522CrossRefGoogle Scholar
  26. 26.
    Li J G, He X M, Zhao R S. Stannum doping of layered LiNi3/8-Co2/8Mn3/8O2 cathode materials with high rate capability for Li-ion batteries. J Power Sources, 2006, 158: 524–528CrossRefGoogle Scholar
  27. 27.
    Tsutomu O, Atsushi U, Masatoshi N. Electrochemistry and structural chemistry of LiNiO2(R-3m) for 4 volt secondary lithium cells. J Electrochem Soc, 1993, 140: 1862–1870CrossRefGoogle Scholar
  28. 28.
    Liu S Q, Li S C, Huang K L. Investigations on the electrode process and kinetics of Li-ion extraction/insertion in Li3V2(PO4)3. Acta Chim Sinica, 2007, 65: 10–16Google Scholar
  29. 29.
    Zhuang Q C, Xu J M, Fan X Y. The research of electrochemical impedance spectroscopy for ion transport characteristics in LiCoO2 battery anode materials. Chin Sci Bull, 2007, 52: 147–153CrossRefGoogle Scholar
  30. 30.
    Lee D J, Scrosatia B, Sun Y K. Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55°C. J Power Sources, 2011, 196: 7742–7746CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • YingJie Zhang
    • 1
    • 2
  • ShuBiao Xia
    • 1
    • 3
  • YanNan Zhang
    • 1
  • Peng Dong
    • 1
  • YuXing Yan
    • 1
    • 3
  • RuiMing Yang
    • 1
    • 3
  1. 1.Faculty of Material Science and EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of EducationYunnan University of NationalitiesKunmingChina
  3. 3.Faculty of Chemistry & Chemical EngineeringQujing Normal UniversityQujingChina

Personalised recommendations