Chinese Science Bulletin

, Volume 58, Issue 2, pp 177–185 | Cite as

Progress in the study of mercury methylation and demethylation in aquatic environments

Open Access
Review Special Issue Toxic Metal Pollution

Abstract

Mercury (Hg) and its compounds are a class of highly toxic and pervasive pollutants. During the biogeochemical cycling of Hg, methylmercury (MeHg), a potent neurotoxin, can be produced and subsequently bioaccumulated along the food chain in aquatic ecosystems. MeHg is among the most widespread contaminants that pose severe health risks to humans and wildlife. Methylation of inorganic mercury to MeHg and demethylation of MeHg are the two most important processes in the cycling of MeHg, determining the levels of MeHg in aquatic ecosystems. This paper reviews recent progress on the study of Hg methylation and demethylation in aquatic environments, focusing on the following three areas: (1) sites and pathways of Hg methylation and demethylation, (2) bioavailability of Hg species for methylation and demethylation, and (3) application of isotope addition techniques in quantitatively estimating the net production of MeHg.

Keywords

mercury cycling methylation demethylation bioavailability methyl mercury 

References

  1. 1.
    Mason R P, Fitzgerald W F, Morel F M M. The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochimica Et Cosmochimica Acta, 1994, 58: 3191–3198CrossRefGoogle Scholar
  2. 2.
    Renner R. Mercury woes appear to grow. Environ Sci Technol, 2004, 38: 144ACrossRefGoogle Scholar
  3. 3.
    Fitzgerald W F. Atmospheric and Oceanic Cycling of Mercury. San Diego: Academic Press, 1989Google Scholar
  4. 4.
    Stein E D, Cohen Y, Winer A M. Environmental distribution and transformation of mercury compounds. Crit Rev Environ Sci Technol, 1996, 26: 1–43CrossRefGoogle Scholar
  5. 5.
    Pacyna E G, Pacyna J M, Fudala J, et al. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci Total Environ, 2006, 370: 147–156CrossRefGoogle Scholar
  6. 6.
    Mergler D, Anderson H A, Chan L H M, et al. Methylmercury Exposure and health effects in humans: A worldwide concern. AMBIO, 2007, 36: 3–11CrossRefGoogle Scholar
  7. 7.
    Jensen S, Jernelov A. Biological methylation of mercury in aquatic organisms. Nature, 1969, 223: 753–754CrossRefGoogle Scholar
  8. 8.
    Compeau G, Bartha R. Methylation and demethylation of mercury under controlled redox, Ph, and salinity conditions. Appl Environ Microbiol, 1984, 48: 1203–1207Google Scholar
  9. 9.
    Berman M, Bartha R. Control of the methylation process in a mercury-polluted aquatic sediment. Environ Pollut B, 1986, 11: 41–53CrossRefGoogle Scholar
  10. 10.
    Steffan R J, Korthals E T, Winfrey M R. Effects of acidification on mercury methylation, demethylation, and volatilization in sediments from an acid-susceptible lake. Appl Environ Microbiol, 1988, 54: 2003–2009Google Scholar
  11. 11.
    Gilmour C C, Henry E A, Mitchell R. Sulfate stimulation of mercury methylation in fresh-water sediments. Environ Sci Technol, 1992, 26: 2281–2287CrossRefGoogle Scholar
  12. 12.
    Gilmour C C, Riedel G S, Ederington M C, et al. Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry, 1998, 40: 327–345CrossRefGoogle Scholar
  13. 13.
    Marvin-DiPasquale M C, Agee J L, Bouse R M, et al. Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California. Environ Geol (Berl), 2003, 43: 260–267Google Scholar
  14. 14.
    Gray J E, Hines M E, Higueras P L, et al. Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almaden Mining District, Spain. Environ Sci Technol, 2004, 38: 4285–4292CrossRefGoogle Scholar
  15. 15.
    Heyes A, Mason R P, Kim E H, et al. Mercury methylation in estuaries: Insights from using measuring rates using stable mercury isotopes. Mar Chem, 2006, 102: 134–147CrossRefGoogle Scholar
  16. 16.
    Drott A, Lambertsson L, Bjorn E, et al. Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments? Environ Sci Technol, 2008, 42: 153–158CrossRefGoogle Scholar
  17. 17.
    Furutani A, Rudd J W M. Measurement of mercury methylation in lake water and sediment samples. Appl Environ Microbiol, 1980, 40: 770–776Google Scholar
  18. 18.
    Matilainen T, Verta M. Mercury methylation and demethylation in aerobic surface waters. Can J Fish Aquat Sci, 1995, 52: 1597–1608CrossRefGoogle Scholar
  19. 19.
    Siciliano S D, O’Driscoll N J, Tordon R, et al. Abiotic production of methylmercury by solar radiation. Environ Sci Technol, 2005, 39: 1071–1077CrossRefGoogle Scholar
  20. 20.
    Monperrus M, Tessier E, Amouroux D, et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Mar Chem, 2007, 107: 49–63CrossRefGoogle Scholar
  21. 21.
    Lehnherr I, St Louis V L, Hintelmann H, et al. Methylation of inorganic mercury in polar marine waters. Nat Geosci, 2011, 4: 298–302CrossRefGoogle Scholar
  22. 22.
    Cleckner L B, Gilmour C C, Hurley J P, et al. Mercury methylation in periphyton of the Florida Everglades. Limnol Oceanogr, 1999, 44: 1815–1825CrossRefGoogle Scholar
  23. 23.
    Mauro J B N, Guimaraes J R D, Hintelmann H, et al. Mercury methylation in macrophytes, periphyton, and water-comparative studies with stable and radio-mercury additions. Anal Bioanal Chem, 2002, 374: 983–989CrossRefGoogle Scholar
  24. 24.
    Desrosiers M, Planas D, Mucci A. Mercury methylation in the epilithon of boreal shield aquatic ecosystems. Environ Sci Technol, 2006, 40: 1540–1546CrossRefGoogle Scholar
  25. 25.
    Yu R-Q, Adatto I, Montesdeoca M R, et al. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland. FEMS Microbiol Ecol, 2010, 74: 655–668CrossRefGoogle Scholar
  26. 26.
    Acha D, Hintelmann H, Yee J. Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region. Chemosphere, 2011, 82: 911–916CrossRefGoogle Scholar
  27. 27.
    Hamelin S, Amyot M, Barkay T, et al. Methanogens: Principal methylators of mercury in Lake Periphyton. Environ Sci Technol, 2011, 45: 7693–7700CrossRefGoogle Scholar
  28. 28.
    Correia R R S, Miranda M R, Guimaraes J R D. Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: Effect of different inhibitors. Environ Res, 2012, 112: 86–91CrossRefGoogle Scholar
  29. 29.
    Guimaraes J R D, Roulet M, Lucotte M, et al. Mercury methylation along a lake-forest transect in the Tapajos river floodplain, Brazilian Amazon: Seasonal and vertical variations. Sci Total Environ, 2000, 261: 91–98CrossRefGoogle Scholar
  30. 30.
    Sellers P, Kelly C A, Rudd J W M, et al. Photodegradation of methylmercury in lakes. Nature, 1996, 380: 694–697CrossRefGoogle Scholar
  31. 31.
    Hammerschmidt C R, Fitzgerald W F. Photodecomposition of methylmercury in an arctic Alaskan lake. Environ Sci Technol, 2006, 40: 1212–1216CrossRefGoogle Scholar
  32. 32.
    Li Y B, Mao Y X, Liu G L, et al. Degradation of methylmercury and its effects on mercury distribution and cycling in the Florida Everglades. Environ Sci Technol, 2010, 44: 6661–6666CrossRefGoogle Scholar
  33. 33.
    Bergquist B A, Blum J D. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science, 2007, 318: 417–420CrossRefGoogle Scholar
  34. 34.
    Naftz D L, Cederberg J R, Krabbenhoft D P, et al. Diurnal trends in methylmercury concentration in a wetland adjacent to Great Salt Lake, Utah, USA. Chem Geol, 2011, 283: 78–86CrossRefGoogle Scholar
  35. 35.
    Reisinger K, Stoeppler M, Nurnberg H W. Biological methylation of inorganic mercury by Saccharomyces-Cerevisiae—A possible environmental process. Fresenius Zeitschrift Fur Analytische Chemie, 1983, 316: 612–615CrossRefGoogle Scholar
  36. 36.
    Trevors J T. Mercury methylation by bacteria. J Basic Microbiol, 1986, 26: 499–504CrossRefGoogle Scholar
  37. 37.
    Choi S C, Bartha R. Cobalamin-mediated mercury methylation by Desulfovibrio-Desulfuricans Ls. Appl Environ Microbiol, 1993, 59: 290–295Google Scholar
  38. 38.
    Choi S C, Chase T, Bartha R. Metabolic pathways leading to mercury methylation in Desulfovibrio-Desulfuricans Ls. Appl Environ Microbiol, 1994, 60: 4072–4077Google Scholar
  39. 39.
    Choi S C, Chase T, Bartha R. Enzymatic catalysis of mercury methylation by Desulfovibrio-Desulfuricans Ls. Appl Environ Microbiol, 1994, 60: 1342–1346Google Scholar
  40. 40.
    Chen Y, Bonzongo J C J, Lyons W B, et al. Inhibition of mercury methylation in anoxic freshwater sediment by group VI anions. Environ Toxicol Chem, 1997, 16: 1568–1574CrossRefGoogle Scholar
  41. 41.
    Pak K R, Bartha R. Mercury methylation by interspecies hydrogen and acetate transfer between sulfidogens and methanogens. Appl Environ Microbiol, 1998, 64: 1987–1990Google Scholar
  42. 42.
    Pak K R, Bartha R. Mercury methylation and demethylation in anoxic lake sediments and by strictly anaerobic bacteria. Appl Environ Microbiol, 1998, 64: 1013–1017Google Scholar
  43. 43.
    King J K, Saunders F M, Lee R F, et al. Coupling mercury methylation rates to sulfate reduction rates in marine sediments. Environ Toxicol Chem, 1999, 18: 1362–1369CrossRefGoogle Scholar
  44. 44.
    King J K, Kostka J E, Frischer M E, et al. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol, 2000, 66: 2430–2437CrossRefGoogle Scholar
  45. 45.
    Macalady J L, Mack E E, Nelson D C, et al. Sediment microbial community structure and mercury methylation in mercury-polluted Clear Lake, California. Appl Environ Microbiol, 2000, 66: 1479–1488CrossRefGoogle Scholar
  46. 46.
    Siciliano S D, Lean D R S. Methyltransferase: An enzyme assay for microbial methylmercury formation in acidic soils and sediments. Environ Toxicol Chem, 2002, 21: 1184–1190CrossRefGoogle Scholar
  47. 47.
    Ekstrom E B, Morel F M M, Benoit J M. Mercury methylation independent of the acetyl-coenzyme a pathway in sulfate-reducing bacteria. Appl Environ Microbiol, 2003, 69: 5414–5422CrossRefGoogle Scholar
  48. 48.
    Marvin-DiPasquale M, Agee J L. Microbial mercury cycling in sediments of the San Francisco Bay-Delta. Estuaries, 2003, 26: 1517–1528CrossRefGoogle Scholar
  49. 49.
    Ranchou-Peyruse M, Monperrus M, Bridou R, et al. Overview of mercury methylation capacities among anaerobic bacteria including representatives of the sulphate-reducers: Implications for environ-mental studies. Geomicrobiol J, 2009, 26: 1–8CrossRefGoogle Scholar
  50. 50.
    Avramescu M L, Yumvihoze E, Hintelmann H, et al. Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada. Sci Total Environ, 2011, 409: 968–978CrossRefGoogle Scholar
  51. 51.
    Larock R C, Hershberger S S. Mercury in organic-chemistry. 19. Rhodium promoted methylation of organomercurials. Tetrahedron Lett, 1981, 22: 2443–2446CrossRefGoogle Scholar
  52. 52.
    Larock R C, Hershberger S S. Mercury in organic-chemistry 21. Methylation of organomercurials via organorhodium species. J Organomet Chem, 1982, 225: 31–41CrossRefGoogle Scholar
  53. 53.
    Nagase H, Ose Y, Sato T, et al. Methylation of mercury by humic substances in an aquatic environment. Sci Total Environ, 1982, 25: 133–142CrossRefGoogle Scholar
  54. 54.
    Nagase H, Ose Y, Sato T, et al. Production of methylmercury by abiological methylation of inorganic mercury in the environment. Jpn J Toxicol Environ Health, 1983, 29: 55CrossRefGoogle Scholar
  55. 55.
    Nagase H, Ose Y, Sato T, et al. Mercury methylation by compounds in humic material. Sci Total Environ, 1984, 32: 147–156CrossRefGoogle Scholar
  56. 56.
    Woggon H, Klein S, Jehle D, et al. Transformation reactions of special metals in organisms and in the environment. 2. Abiological methylation reactions of mercury, especially by methyltin compounds, and humic and fulvic-acids. Nahrung-Food, 1984, 28: 851–862CrossRefGoogle Scholar
  57. 57.
    Lee Y H, Hultberg H, Andersson I. Catalytic effect of various metalions on the methylation of mercury in the presence of humic substances. Water Air Soil Pollut, 1985, 25: 391–400Google Scholar
  58. 58.
    Weber J H, Reisinger K, Stoeppler M. Methylation of mercury(II) by fulvic-acid. Environ Technol Lett, 1985, 6: 203–208CrossRefGoogle Scholar
  59. 59.
    Bellama J M, Jewett K L, Nies J D. Methylation of mercury(II) species in water by organosilicon compounds. Abstr Pap Am Chem Soc, 1986, 192: 127–GEOCGoogle Scholar
  60. 60.
    Nagase H, Ose Y, Sato T, et al. Mercury methylation by ash from refuse incineration. Sci Total Environ, 1986, 53: 133–138CrossRefGoogle Scholar
  61. 61.
    Watanabe N, Nagase H, Nakamura T, et al. Chemical methylation of mercury(II) salts by polydimethylsiloxanes in aqueous-solution. Ecotoxicol Environ Saf, 1986, 11: 174–178CrossRefGoogle Scholar
  62. 62.
    Bellama J M, Jewett K L, Manders W F, et al. A comparison of the rates of methylation of mercury(II) species in aquatic media by various organotin and organo-silicon moieties. Sci Total Environ, 1988, 73: 39–51CrossRefGoogle Scholar
  63. 63.
    Cerrati G, Bernhard M, Weber J H. Model reactions for abiotic mercury(II) methylation-kinetics of methylation of mercury(II) by mono-methyltin, di-methyltin, and tri-methyltin in seawater. Appl Organomet Chem, 1992, 6: 587–595CrossRefGoogle Scholar
  64. 64.
    Weber J H. Review of possible paths for abiotic methylation of mercury(II) in the aquatic environment. Chemosphere, 1993, 26: 2063–2077CrossRefGoogle Scholar
  65. 65.
    Gardfeldt K, Munthe J, Stromberg D, et al. A kinetic study on the abiotic methylation of divalent mercury in the aqueous phase. Sci Total Environ, 2003, 304: 127–136CrossRefGoogle Scholar
  66. 66.
    Yin Y, Chen B, Mao Y, et al. Possible alkylation of inorganic Hg(II) by photochemical processes in the environment. Chemosphere, 2012 (in press)Google Scholar
  67. 67.
    Berman M, Bartha R. Levels of chemical versus biological methylation of mercury in sediments. Bull Environ Contam Toxicol, 1986, 36: 401–404CrossRefGoogle Scholar
  68. 68.
    Mauro J B N, Guimaraes J R D, Melamed R. Mercury methylation in macrophyte roots of a tropical lake. Water Air Soil Pollut, 2001, 127: 271–280CrossRefGoogle Scholar
  69. 69.
    Kerry A, Welbourn P M, Prucha B, et al. Mercury methylation by sulfate-reducing bacteria from sediments of an acid stressed lake. Water Air Soil Pollut, 1991, 56: 565–575CrossRefGoogle Scholar
  70. 70.
    King J K, Kostka J E, Frischer M E, et al. A quantitative relationship that remonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. Environ Sci Technol, 2001, 35: 2491–2496CrossRefGoogle Scholar
  71. 71.
    Dias M, Salvado J C, Monperrus M, et al. Characterization of Desulfomicrobium salsuginis sp. nov. and Desulfomicrobium aestuarii sp. nov., two new sulfate-reducing bacteria isolated from the Adour estuary (French Atlantic coast) with specific mercury methylation potentials. Syst Appl Microbiol, 2008, 31: 30–37CrossRefGoogle Scholar
  72. 72.
    Ekstrom E B, Morel F M M. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria. Environ Sci Technol, 2008, 42: 93–99CrossRefGoogle Scholar
  73. 73.
    Jeremiason J D, Engstrom D R, Swain E B, et al. Sulfate addition increases methylmercury production in an experimental wetland. Environ Sci Technol, 2006, 40: 3800–3806CrossRefGoogle Scholar
  74. 74.
    Compeau G C, Bartha R. Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol, 1985, 50: 498–502Google Scholar
  75. 75.
    Fleming E J, Mack E E, Green P G, et al. Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol, 2006, 72: 457–464CrossRefGoogle Scholar
  76. 76.
    Kerin E J, Gilmour C C, Roden E, et al. Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol, 2006, 72: 7919–7921CrossRefGoogle Scholar
  77. 77.
    Hayashi K, Kawai S, Ohno T, et al. Photomethylation of inorganic mercury by aliphatic alpha-amino acids. J Chem Soc Chem Commun, 1977: 158–159Google Scholar
  78. 78.
    Nagase H, Ose Y, Sato T. Possible methylation of inorganic mercury by silicones in the environment. Sci Total Environ, 1988, 73: 29–38CrossRefGoogle Scholar
  79. 79.
    Li Y, Yin Y, Liu G, et al. Estimation of the major source and sink of methylmercury in the Florida Everglades. Environ Sci Technol, 2012, 46: 5885–5893CrossRefGoogle Scholar
  80. 80.
    Oremland R S, Culbertson C W, Winfrey M R. Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation. Appl Environ Microbiol, 1991, 57: 130–137Google Scholar
  81. 81.
    Baldi F, Pepi M, Filippelli M. Methylmercury resistance in Desulfovibrio desulfuricans strains in relation to methylmercury degradation. Appl Environ Microbiol, 1993, 59: 2479–2485Google Scholar
  82. 82.
    Oremland R S, Miller L G, Dowdle P, et al. Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the carson river, nevada. Appl Environ Microbiol, 1995, 61: 2745–2753Google Scholar
  83. 83.
    Inoko M. Studies on the photochemical decomposition of organomercurials-methylmercury(II) chloride. Environ Pollut B, 1981, 2: 3–10CrossRefGoogle Scholar
  84. 84.
    Suda I, Takahashi H. Degradation of methyl and ethyl mercury into inorganic mercury by other reactive oxygen species besides hydroxyl radical. Arch Toxicol, 1992, 66: 34–39CrossRefGoogle Scholar
  85. 85.
    Suda I, Suda M, Hirayama K. Degradation of methyl and ethyl mercury by singlet oxygen generated from sea-water exposed to sunlight or ultraviolet-light. Arch Toxicol, 1993, 67: 365–368CrossRefGoogle Scholar
  86. 86.
    Marvin-DiPasquale M, Agee J, McGowan C, et al. Methyl-mercury degradation pathways: A comparison among three mercury-impacted ecosystems. Environ Sci Technol, 2000, 34: 4908–4916CrossRefGoogle Scholar
  87. 87.
    Gardfeldt K, Sommar J, Stromberg D, et al. Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase. Atmos Environ, 2001, 35: 3039–3047CrossRefGoogle Scholar
  88. 88.
    Chen J, Pehkonen S O, Lin C J. Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters. Water Res, 2003, 37: 2496–2504CrossRefGoogle Scholar
  89. 89.
    Lehnherr I, St Louis V L. Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems. Environ Sci Technol, 2009, 43: 5692–5698CrossRefGoogle Scholar
  90. 90.
    Hammerschmidt C R, Fitzgerald W F. Iron-mediated photochemical decomposition of methylmercury in an Arctic Alaskan lake. Environ Sci Technol, 2010, 44: 6138–6143CrossRefGoogle Scholar
  91. 91.
    Zhang T, Hsu-Kim H. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nat Geosci, 2010, 3: 473–476CrossRefGoogle Scholar
  92. 92.
    Khan M A K, Wang F Y. Chemical demethylation of methylmercury by selenoamino acids. Chem Res Toxicol, 2010, 23: 1202–1206CrossRefGoogle Scholar
  93. 93.
    Asaduzzaman A, Schreckenbach G. Degradation mechanism of methyl mercury selenoamino acid complexes: A computational study. Inorg Chem, 2011, 50: 2366–2372CrossRefGoogle Scholar
  94. 94.
    Marvin-DiPasquale M C, Oremland R S. Bacterial methylmercury degradation in Florida Everglades peat sediment. Environ Sci Technol, 1998, 32: 2556–2563CrossRefGoogle Scholar
  95. 95.
    Schaefer J K, Yagi J, Reinfelder J R, et al. Role of the bacterial organomercury lyase (MerB) in controlling methylmercury accumulation in mercury-contaminated natural waters. Environ Sci Technol, 2004, 38: 4304–4311CrossRefGoogle Scholar
  96. 96.
    Allard B, Arsenie I. Abiotic reduction of mercury by humic substances in aquatic system-an important process for the mercury cycle. Water Air Soil Pollut, 1991, 56: 457–464CrossRefGoogle Scholar
  97. 97.
    Black F J, Poulin B A, Flegal A R. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters. Geochimica Et Cosmochimica Acta, 2012, 84: 492–507CrossRefGoogle Scholar
  98. 98.
    Chandan P. Mercury Isotope Fractionation During Aqueous Photoreduction of Methylmercury in Presence of Different Types and Amounts of Dissolved Organic Matter. Toronto: University of Toronto, 2011Google Scholar
  99. 99.
    Han S, Obraztsova A, Pretto P, et al. Biogeochemical factors affecting mercury methylation in sediments of the Venice Lagoon, Italy. Environ Toxicol Chem, 2007, 26: 655–663CrossRefGoogle Scholar
  100. 100.
    Hammerschmidt C R, Fitzgerald W F. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ Sci Technol, 2004, 38: 1487–1495CrossRefGoogle Scholar
  101. 101.
    Benoit J M, Gilmour C C, Mason R P. The influence of sulfide on solid phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3). Environ Sci Technol, 2001, 35: 127–132CrossRefGoogle Scholar
  102. 102.
    Hintelmann H, Keppel-Jones K, Evans R D. Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environ Toxicol Chem, 2000, 19: 2204–2211CrossRefGoogle Scholar
  103. 103.
    Farrell R E, Huang P M, Germida J J. Biomethylation of mercury(II) adsorbed on mineral colloids common in freshwater sediments. Appl Organomet Chem, 1998, 12: 613–620CrossRefGoogle Scholar
  104. 104.
    Morel F M M, Kraepiel A M L, Amyot M. The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst, 1998, 29: 543–566CrossRefGoogle Scholar
  105. 105.
    Drott A, Lambertsson L, Bjorn E, et al. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environ Sci Technol, 2007, 41: 2270–2276CrossRefGoogle Scholar
  106. 106.
    Wolfenden S, Charnock J M, Hilton J, et al. Sulfide species as a sink for mercury in lake sediments. Environ Sci Technol, 2005, 39: 6644–6648CrossRefGoogle Scholar
  107. 107.
    Ullrich S M, Tanton T W, Abdrashitova S A. Mercury in the aquatic environment: A review of factors affecting methylation. Crit Rev Environ Sci Technol, 2001, 31: 241–293CrossRefGoogle Scholar
  108. 108.
    Fitzgerald W F, Lamborg C H, Hammerschmidt C R. Marine biogeochemical cycling of mercury. Chem Rev, 2007, 107: 641–662CrossRefGoogle Scholar
  109. 109.
    Benoit J M, Gilmour C C, Mason R P, et al. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol, 1999, 33: 951–957CrossRefGoogle Scholar
  110. 110.
    Benoit J M, Mason R P, Gilmour C C. Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria. Environ Toxicol Chem, 1999, 18: 2138–2141Google Scholar
  111. 111.
    Benoit J M, Gilmour C C, Mason R P. Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3). Appl Environ Microbiol, 2001, 67: 51–58CrossRefGoogle Scholar
  112. 112.
    Lin C C, Jay J A. Mercury methylation by planktonic and biofilm cultures of Desulfovibrio desulfuricans. Environ Sci Technol, 2007, 41: 6691–6697CrossRefGoogle Scholar
  113. 113.
    Hammerschmidt C R, Fitzgerald W F, Balcom P H, et al. Organic matter and sulfide inhibit methylmercury production in sediments of New York/New Jersey Harbor. Mar Chem, 2008, 109: 165–182CrossRefGoogle Scholar
  114. 114.
    Schaefer J K, Morel F M M. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat Geosci, 2009, 2: 123–126CrossRefGoogle Scholar
  115. 115.
    Schaefer J K, Rocks S S, Zheng W, et al. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA, 2011, 108: 8714–8719CrossRefGoogle Scholar
  116. 116.
    Ravichandran M. Interactions between mercury and dissolved organic matter—A review. Chemosphere, 2004, 55: 319–331CrossRefGoogle Scholar
  117. 117.
    Baughman G L, Gordon J A, Wolfe N L, et al. Chemistry of Organomercurials in Aquatic Systems. Washington DC: US Environmental Protection Agency, 1973Google Scholar
  118. 118.
    Akagi H, Mortimer D C, Miller D R. Mercury methylation and partition in aquatic systems. Bull Environ Contam Toxicol, 1979, 23: 372–376CrossRefGoogle Scholar
  119. 119.
    Gilmour C C, Riedel G S. Measurement of Hg methylation in sediments using high specific-activity Hg-203 and ambient incubation. Water Air Soil Pollut, 1995, 80: 747–756CrossRefGoogle Scholar
  120. 120.
    Koron N, Bratkic A, Guevara S R, et al. Mercury methylation and reduction potentials in marine water: An improved methodology using (197)Hg radiotracer. Appl Radiat Isotop, 2012, 70: 46–50CrossRefGoogle Scholar
  121. 121.
    Monperrus M, Tessier E, Point D, et al. The biogeochemistry of mercury at the sediment-water interface in the Thau Lagoon. 2. Evaluation of mercury methylation potential in both surface sediment and the water column. Estuar Coast Shelf Sci, 2007, 72: 485–496CrossRefGoogle Scholar
  122. 122.
    Hintelmann H, Evans R D, Villeneuve J Y. Measurement of mercury methylation in sediments by using enriched stable mercury isotopes combined with methylmercury determination by gas-chromatography inductively-coupled plasma-mass spectrometry. J Anal At Spectrom, 1995, 10: 619–624CrossRefGoogle Scholar
  123. 123.
    Hintelmann H, Harris R, Heyes A, et al. Reactivity and mobility of new and old mercury deposition in a Boreal forest ecosystem during the first year of the METAALICUS study. Environ Sci Technol, 2002, 36: 5034–5040CrossRefGoogle Scholar
  124. 124.
    Lambertsson L, Lundberg E, Nilsson M, et al. Applications of enriched stable isotope tracers in combination with isotope dilution GC-ICP-MS to study mercury species transformation in sea sediments during in situ ethylation and determination. J Anal At Spectrom, 2001, 16: 1296–1301CrossRefGoogle Scholar
  125. 125.
    Martin-Doimeadios R C, Tessier E, Amouroux D, et al. Mercury methylation/demethylation and volatilization pathways in estuarine sediment slurries using species-specific enriched stable isotopes. Mar Chem, 2004, 90: 107–123CrossRefGoogle Scholar
  126. 126.
    Whalin L M, Mason R P. A new method for the investigation of mercury redox chemistry in natural waters utilizing deflatable Teflon (R) bags and additions of isotopically labeled mercury. Anal Chim Acta, 2006, 558: 211–221CrossRefGoogle Scholar
  127. 127.
    Monperrus M, Gonzalez P R, Amouroux D, et al. Evaluating the potential and limitations of double-spiking species-specific isotope dilution analysis for the accurate quantification of mercury species in different environmental matrices. Anal Bioanal Chem, 2008, 390: 655–666CrossRefGoogle Scholar
  128. 128.
    Bridou R, Monperrus M, Gonzalez P R, et al. Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers. Environ Toxicol Chem, 2011, 30: 337–344CrossRefGoogle Scholar
  129. 129.
    Hintelmann H, Evans R D. Application of stable isotopes in environmental tracer studies—Measurement of monomethylmercury (CH3Hg+) by isotope dilution ICP-MS and detection of species transformation. Fresen J Anal Chem, 1997, 358: 378–385CrossRefGoogle Scholar
  130. 130.
    Gray J E, Hines M E, Biester H. Mercury methylation influenced by areas of past mercury mining in the Terlingua district, Southwest Texas, USA. Appl Geochem, 2006, 21: 1940–1954CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of Chemistry & Biochemistry, Southeast Environmental Research CenterFlorida International UniversityMiamiUSA

Personalised recommendations