Advertisement

Chinese Science Bulletin

, Volume 58, Issue 4–5, pp 525–530 | Cite as

Solar cycle dependence of the seasonal variation of auroral hemispheric power

  • Ling Zheng
  • SuiYan FuEmail author
  • QuiGang Zong
  • George Parks
  • Chi Wang
  • Xi Chen
Open Access
Article Geophysics

Abstract

Although much has been done on the hemispheric asymmetry (or seasonal variations) of auroral hemispheric power (HP), the dependence of HP hemispheric asymmetry on solar cycle has not yet been studied. We have analyzed data during 1979–2010 and investigated the dependence of HP hemispheric asymmetry/seasonal variation for the whole solar cycle. Here we show that (1) the hemispheric asymmetry of HP is positively correlated to the value of solar F10.7 with some time delay; (2) it is closely related to the coupling function between the solar wind and magnetosphere; and (3) the winter hemisphere receives more auroral power than the summer hemisphere for K p∼0 to 6. The statistic results can be partly understood in the framework of the ionospheric conductivity feedback model. The similarity and differences between our results and previous results are discussed in the paper.

Keywords

auroral power hemispheric asymmetry coupling function solar cycle precipitation 

References

  1. 1.
    Barth C A, Baker D N, Bailey S M. Seasonal variation of auroral electron precipitation. Geophys Res Lett, 2004, 31: L04809CrossRefGoogle Scholar
  2. 2.
    Ridley A J. Effects of seasonal changes in the ionospheric conductances on magnetospheric field-aligned currents. Geophys Res Lett, 2007, 34: L05101CrossRefGoogle Scholar
  3. 3.
    Emery B A, Coumans V, Evans D S, et al. Seasonal, K p, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power. J Geophys Res, 2008, 113: A06311CrossRefGoogle Scholar
  4. 4.
    Luan X, Wang W, Burns A, et al. Seasonal and hemispheric variations of the total auroral precipitation energy flux from TIMED/ GUVI. J Geophys Res, 2010, 115: A11304CrossRefGoogle Scholar
  5. 5.
    Liou K, Newell P T, Meng C I. Seasonal effects on auroral particle acceleration and precipitation. J Geophys Res, 2001, 106: 5531–5542CrossRefGoogle Scholar
  6. 6.
    Newell P T, Sotirelis T, Liou K, et al. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res, 2007, 112: A01206CrossRefGoogle Scholar
  7. 7.
    Atkinson G. Auroral arcs: Result of the interaction of a dynamic magnetosphere with the ionosphere. J Geophys Res, 1970, 75: 4746–4755CrossRefGoogle Scholar
  8. 8.
    Holzer T E, Saito T. Quiet auroral arcs and electrodynamic coupling between the ionosphere and the magnetosphere. J Geophys Res, 1973, 78: 7314–7329CrossRefGoogle Scholar
  9. 9.
    Sato T. A theory of quiet auroral arcs. J Geophys Res, 1978, 83: 1042–1048CrossRefGoogle Scholar
  10. 10.
    Lysak R L. Feedback instability of the ionospheric resonant cavity. J Geophys Res, 1991, 96: 1553–1568CrossRefGoogle Scholar
  11. 11.
    Hardy D A, Gussenhoven M S, Brautigam D. A statistical model of auroral ion precipitation. J Geophys Res, 1989, 94: 370–392CrossRefGoogle Scholar
  12. 12.
    Hubert B, Gérard J C, Evans D S, et al. Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV. J Geophys Res, 2002, 107: A01183CrossRefGoogle Scholar
  13. 13.
    Strickland D J, Jasperse J R, Whalen J A. Dependence of auroral FUV emissions on the incident electron spectrum and neutral atmosphere. J Geophys Res, 1983, 88: 8051–8062CrossRefGoogle Scholar
  14. 14.
    Strickland D J, Bishop J, Evans J S, et al. Atmospheric Ultraviolet Radiance Integrated Code (AURIC): Theory, software architecture, inputs, and selected results. J Quant Spectrosc Radiat Transfer, 1999, 62: 689–742CrossRefGoogle Scholar
  15. 15.
    Germany G A, Spann J F, Parks G K, et al. Auroral observations from the Polar Ultraviolet Imager (UVI). In: Horwitz J L, Gallagher D L, Peterson W K, eds. Geospace Mass and Energy Flow: Results from the International Solar-Terrestrial Physics Program, Geophys Monogr Ser, Washington DC, AGU, 1998, 104: 149–160CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Ling Zheng
    • 1
  • SuiYan Fu
    • 1
    Email author
  • QuiGang Zong
    • 1
  • George Parks
    • 2
  • Chi Wang
    • 3
  • Xi Chen
    • 1
  1. 1.School of Earth and Space SciencesPeking UniversityBeijingChina
  2. 2.Space Sciences LaboratoryUC BerkeleyUSA
  3. 3.State Key Laboratory of Space WeatherChinese Academy of SciencesBeijingChina

Personalised recommendations