Advertisement

Chinese Science Bulletin

, Volume 58, Issue 4–5, pp 456–467 | Cite as

Discovering the roles of subsurface microorganisms: Progress and future of deep biosphere investigation

  • FengPing Wang
  • ShuLin Lu
  • Beth N. Orcutt
  • Wei Xie
  • Ying Chen
  • Xiang Xiao
  • Katrina J. Edwards
Open Access
Review Oceanology

Abstract

The discovery of the marine “deep biosphere”—microorganisms living deep below the seafloor—is one of the most significant and exciting discoveries since the ocean drilling program began more than 40 years ago. Study of the deep biosphere has become a research frontier and a hot spot both for geological and biological sciences. Here, we introduce the history of the discovery of the deep biosphere, and then we describe the types of environments for life below the seafloor, the energy sources for the living creatures, the diversity of organisms within the deep biosphere, and the new tools and technologies used in this research field. We will highlight several recently completed Integrated Ocean Drilling Program Expeditions, which targeted the subseafloor deep biosphere within the crust and sediments. Finally, future research directions and challenges of deep biosphere investigation towards uncovering the roles of subsurface microorganisms will be briefly addressed.

Keywords

deep biosphere ocean drilling habitats niche dark energy CORK history of the discovery of the marine deep biosphere 

References

  1. 1.
    ZoBell C E, Anderson Q A. Vertical distribution of bacteria in marine sediments. Am Assoc Pet Geol Bull, 1936, 20: 258–269Google Scholar
  2. 2.
    ZoBell C E, Morita R Y. Barophilic bacteria in some deep sea sediments. J Bacteriol, 1957, 73: 563–568Google Scholar
  3. 3.
    ZoBell C E. Studies on the bacterial flora of marine bottom sediments. J Sediment Res A Sediment Petrol Process, 1938, 8: 10–18Google Scholar
  4. 4.
    Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal sprirngs on the Galapagos rift. Science, 1979, 203: 1073–1083CrossRefGoogle Scholar
  5. 5.
    Parkes R J, Cragg B A, Bale S J, et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 1994, 371: 410–413CrossRefGoogle Scholar
  6. 6.
    Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: The unseen majority. Proc Natl Acad Sci USA, 1998, 95: 6578–6583CrossRefGoogle Scholar
  7. 7.
    Lipp J S, Morono Y, Inagaki F, et al. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 2008, 454: 991–994CrossRefGoogle Scholar
  8. 8.
    Edwards K J, Bach W, McCollom T M. Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. Trends Microbiol, 2005, 13: 449–459CrossRefGoogle Scholar
  9. 9.
    D’Hondt S L, Jorgensen B B, Miller D J, et al. Proc. ODP Init. Repts. 201: College Station, TX (Ocean Drilling Program). 2003CrossRefGoogle Scholar
  10. 10.
    Expedition 331 Scientists. Deep hot biosphere. IODP Prel Rept, 2010, 331. doi: 10.2204/iodp.pr.331.2010Google Scholar
  11. 11.
    Expedition 329 Scientists. South Pacific Gyre subseafloor life. IODP Prel Rept, 329. 2011, doi: 10.2204/iodp.pr.329.2011Google Scholar
  12. 12.
    Expedition 336 Scientists. Mid-Atlantic Ridge microbiology: Initiation of long-term coupled microbiological, geochemical, and hydrological experimentation within the seafloor at North Pond, western flank of the Mid-Atlantic Ridge. IODP Prel Rept, 336. 2011, doi: 10.2204/iodp.pr.336.2011Google Scholar
  13. 13.
    Orcutt B N, Sylvan J B, Knab N J, et al. Microbial ecology of the dark ocean above, at and below the seafloor. Microbiol Mol Biol Rev, 2011, 75: 361–422CrossRefGoogle Scholar
  14. 14.
    Edwards K J, Wheat C G, Sylvan J B. Under the sea: Microbial life in volcanic oceanic crust. Nat Rev Microbiol, 2011, 9: 703–712CrossRefGoogle Scholar
  15. 15.
    Schrenk M O, Huber J A, Edwards K J. Microbial provinces in the subseafloor. Oceanography, 2009, 2: 85–110Google Scholar
  16. 16.
    Fang J S, Zhang L. Exploring the deep biosphere. Sci China Earth Sci, 2011, 54: 157–165CrossRefGoogle Scholar
  17. 17.
    Fry J C, Parkes R J, Cragg B A, et al. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol, 2008, 66: 181–196CrossRefGoogle Scholar
  18. 18.
    Santelli C M, Edgcomb V P, Bach W, et al. The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration. Environ Microbiol, 2009, 11: 86–98CrossRefGoogle Scholar
  19. 19.
    Johnson H P, Priuis M J. Fluxes of fluid and heat from the oceanic crustal resevoir. Earth Planet Sci Lett, 2003, 216: 565–574CrossRefGoogle Scholar
  20. 20.
    Fisher A T. Permeability within basaltic oceanic crust. Geol Rev, 1998, 36: 143–182Google Scholar
  21. 21.
    Wheat C G, McManus J, Mottl M J, et al. Oceanic phosphorous imbalance: Magnitude of the mid-ocean ridge flank hydrothermal sink. Geophys Res Lett, 2003, 30: 1895CrossRefGoogle Scholar
  22. 22.
    D’Hondt S L, Spivack A J, Pockalnya R, et al. Subseafloor sedimentary life in the South Pacific gyre. Proc Natl Acad Sci USA, 2009, 106: 11651–11656Google Scholar
  23. 23.
    Pollack H N, Hurter S J, Johnson J R. Heat flow from the Earth’s interior: Analysis of the global data set. Rev Geophys, 1993, 31: 267–280CrossRefGoogle Scholar
  24. 24.
    Detrick R S. Portrait of a magma chamber. Nature, 2000, 406: 578–579CrossRefGoogle Scholar
  25. 25.
    Fisk M R, Giovannoni S J, Thoreth I H. Alteration of oceanic volcanic glass: Textural evidence of microbial activity. Science, 1998, 281: 978–980CrossRefGoogle Scholar
  26. 26.
    Reysenbach A L, Banta A B, Boone D R, et al. Microbial essentials at hydrothermal vents. Nature, 2000, 404: 835CrossRefGoogle Scholar
  27. 27.
    Wang F P, Zhou H Y, Meng J, et al. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proc Natl Acad Sci USA, 2009, 106: 4840CrossRefGoogle Scholar
  28. 28.
    Huber J A, Butterfield D A, Baross J A. Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microbiol, 2002, 68: 1585–1594CrossRefGoogle Scholar
  29. 29.
    Page A, Tivey M K, Stakes D S, et al. Temporal and spatial archaeal colonization of hydrothermal vent deposits. Environ Microbiol, 2008, 10: 874–884CrossRefGoogle Scholar
  30. 30.
    Flores G E, Campbell J H, Kirshtein J D, et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ Microbiol, 2011, 13: 2158–2171CrossRefGoogle Scholar
  31. 31.
    Deming J W, Baross J A. Deep-sea smokers: Windows to a subsurface biosphere? Geochim Cosmochim Acta, 1993, 57: 3219–3230CrossRefGoogle Scholar
  32. 32.
    Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu Rev Earth Planet Sci, 2002, 30: 385–491CrossRefGoogle Scholar
  33. 33.
    Takai K, Gamo T, Tsunogai U, et al. Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles, 2004, 8: 269–282CrossRefGoogle Scholar
  34. 34.
    Cowen J. Fluids from aging ocean crust that support microbial life. Science, 2003, 299: 120–123CrossRefGoogle Scholar
  35. 35.
    Embley R W, Hobart M A, Anderson R N, et al. Anomalous heat flow in the Northwest Atlantic: A case for continued hydrothermal circulation in 80-M.Y. Crust. J Geophys Res, 1983, 88: 1067–1074CrossRefGoogle Scholar
  36. 36.
    Moyer C L, Tiedje J M, Dobbs F C, et al. Diversity of deep-sea hydrothermal vent Archaea from Loihi Seamount, Hawaii. Deep Sea Res Part II, 1998, 45: 303–317CrossRefGoogle Scholar
  37. 37.
    Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, 2001, 412: 145CrossRefGoogle Scholar
  38. 38.
    Kelley D S. A serpentinite-hosted ecosystem: The lost city hydrothermal field. Science, 2005, 307: 1428–1434CrossRefGoogle Scholar
  39. 39.
    Wheat C G, Elderfield H, Mottl M J, et al. Chemical composition of basement fluids within an oceanic ridge flank: Implications for along-strike and across-strike hydrothermal circulation. J Geophys Res, 2000, 105: 13437–13447CrossRefGoogle Scholar
  40. 40.
    Bach W, Edwards K J. Iron and sulfide oxidation within the basaltic ocean crust: Implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta, 2003, 67: 3871–3887CrossRefGoogle Scholar
  41. 41.
    Furnes H, Staudigel H, Thorseth I H, et al. Bioalteration of basaltic glass in the oceanic crust. Geochem Geophys Geosys, 2001, 2: 1049CrossRefGoogle Scholar
  42. 42.
    Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J Geophys Res, 1995, 100: 6093–6095CrossRefGoogle Scholar
  43. 43.
    Shipboard Scientific Party. Juan de Fuca hydrogeology: The hydrogeologic architecture of basaltic oceanic crust: compartmentalization, anisotropy, microbiology, and crustal-scale properties on the eastern flank of Juan de Fuca Ridge, eastern Pacific Ocean. IODP Prel Rept, 301. 2004, doi: 10.2204/iodp.pr.301.2004.CrossRefGoogle Scholar
  44. 44.
    Expedition 327 Scientists. Juan de Fuca Ridge-flank hydrogeology: The hydrogeologic architecture of basaltic oceanic crust: Compartmentalization, anisotropy, microbiology, and crustal-scale properties on the eastern flank of Juan de Fuca Ridge, eastern Pacific Ocean. IODP Prel Rept, 327. 2010, doi: 10.2204/iodp.pr.327.2010.Google Scholar
  45. 45.
    Edwards K J, Fisher A T, Wheat C G. The deep subsurface biosphere in igneous ocean crust: Frontier habitats for microbiological exploration. Front Microbiol, 2012, 3: 8CrossRefGoogle Scholar
  46. 46.
    McCollom T M. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes. Deep Sea Res Part I, 2000, 47: 85–101CrossRefGoogle Scholar
  47. 47.
    Lomstein B A, Langerhuus A T, D’Hondt S, et al. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature, 2012, 484: 101–104CrossRefGoogle Scholar
  48. 48.
    Nauhaus K, Boetius A, Krüger M, et al. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol, 2002, 4: 296–305CrossRefGoogle Scholar
  49. 49.
    Nauhaus K, Treude T, Boetius A, et al. Environmental regulation of the anaerobic oxidation of methane: A comparison of ANME-I and ANME-II communities. Environ Microbiol, 2005, 7: 98–106CrossRefGoogle Scholar
  50. 50.
    Knittel K, Boetius A. Anaerobic oxidation of methane: Progress with an unknown process. Annu Rev Microbiol, 2009, 63: 311–334CrossRefGoogle Scholar
  51. 51.
    House C H, Orphan V J, Turk K A, et al. Extensive carbon isotopic heterogeneity among methane seep microbiota. Environ Microbiol, 2009, 11: 2207–2215CrossRefGoogle Scholar
  52. 52.
    Dekas A E, Poretsky R S, Orphan V J. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science, 2009, 326: 422–426CrossRefGoogle Scholar
  53. 53.
    Beal E J, House C H, Orphan V J. Manganese- and iron-dependent marine methane oxidation. Science, 2009, 325: 184–187CrossRefGoogle Scholar
  54. 54.
    Biddle J F, Lipp J S, Lever M A, et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA, 2006, 103: 3846–3851CrossRefGoogle Scholar
  55. 55.
    Inagaki F, Nunoura T, Nakagawa S, et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA, 2006, 103: 2815–2820CrossRefGoogle Scholar
  56. 56.
    Meng J, Wang F P, Wang F, et al. An uncultivated crenarchaeota contains functional bacteriochlorophyll a synthase. ISME J, 2009, 3: 106–116CrossRefGoogle Scholar
  57. 57.
    Chapelle F H, O’Neill K, Bradley P M, et al. A hydrogen-based subsurface microbial community dominated by methanogens. Nature, 2002, 415: 312–315CrossRefGoogle Scholar
  58. 58.
    Mason O U, Di Meo-Savoie C A, Van Nostrand J D, et al. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J, 2009, 3: 231–242CrossRefGoogle Scholar
  59. 59.
    Santelli C M, Orcutt B N, Banning E, et al. Abundance and diversity of microbial life in ocean crust. Nature, 2008, 453: 653–657CrossRefGoogle Scholar
  60. 60.
    Orcutt B N, Bach W, Becker K, et al. Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J, 2010, 5: 692–703CrossRefGoogle Scholar
  61. 61.
    Lysnes K, Thorseth I H, Steinsbu B O, et al. Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol, 2004, 50: 213–230CrossRefGoogle Scholar
  62. 62.
    Emerson D, Rentz J A, Lilburn T G, et al. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS one, 2007, 2: e667CrossRefGoogle Scholar
  63. 63.
    Expedition 330 Scientists. Louisville Seamount Trail: Implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots. IODP Prel Rept, 330. 2011, doi: 10.2204/iodp.pr.330.2011Google Scholar
  64. 64.
    Einen J, Thorseth I H, Ovreas L. Enumeration of archaea and bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy. FEMS Microbiol Lett, 2008, 282: 182–187CrossRefGoogle Scholar
  65. 65.
    Auguet J C, Barberan A, Casamayor E O. Global ecological patterns in uncultured Archaea. ISME J, 2009, 4: 182–190CrossRefGoogle Scholar
  66. 66.
    Takai K, Nakamura K. Archaeal diversity and community development in deep-sea hydrothermal vents. Curr Opin Microbiol, 2011, 14: 282–291CrossRefGoogle Scholar
  67. 67.
    Xie W, Wang F P, Guo L, et al. Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. ISME J, 2011, 5: 414CrossRefGoogle Scholar
  68. 68.
    Davis E E, Becker K, Pettigrew T L, et al. Proc. ODP Init. Repts. 139: College Station, TX (Ocean Drilling Program). 1992CrossRefGoogle Scholar
  69. 69.
    Fisher A T, Wheat C G, Becker K, et al. Scientific and technical design and deployment of longterm, subseafloor observatories for hydrogeologic and related experiments, IODP Expedition 301, eastern flank of Juan de Fuca Ridge. 301: College Station, TX Integrated Ocean Drilling Program Management International, Inc. 2005Google Scholar
  70. 70.
    Expedition 332 Scientists. NanTroSEIZE Stage 2: Riserless observatory. IODP Prel Rept, 332. 2011, doi: 10.2204/iodp.pr.332.2011Google Scholar
  71. 71.
    State Key Laboratory of Marine Geology. Under Water Observatories: The Combination of Science and Technology (in Chinese). Shanghai: Tongji University Press, 2011Google Scholar
  72. 72.
    Girguis P R, Cozen A E, DeLong E F. dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-clow bioreactor. Appl Environ Microbiol, 2005, 71: 3725–3733CrossRefGoogle Scholar
  73. 73.
    Deusner C, Meyer V, Ferdelman T G. High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Biosens Bioelectron, 2009, 105: 524–533Google Scholar
  74. 74.
    Jagersma G C, Meulepas R J W, Heikamp J I, et al. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment. Environ Microbiol, 2009, 11: 3223–3232CrossRefGoogle Scholar
  75. 75.
    Zhang Y, Arends J B A, Van de Wiele T, et al. Bioreactor technology in marine microbiology: From design to future application. Biotechnol Adv, 2011, 29: 312–321CrossRefGoogle Scholar
  76. 76.
    Grossart H P, Gust G. Hydrostatic pressure affects physiology and community structure of marine bacteria during settling to 4000 m: An experimental approach. Mar Ecol Prog Ser, 2009, 390: 97–104CrossRefGoogle Scholar
  77. 77.
    Jannasch H W, Wirsen C O, Doherty K W. A pressurized chemostat for the study of marine barophilic and oligotrophic bacteria. Appl Environ Microbiol, 1996, 62: 1593Google Scholar
  78. 78.
    Parkes R J, Sellek G, Webster G, et al. Culturable prokaryotic diversity of deep, gas hydrate sediments: First use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environ Microbiol, 2009, 11: 3140–3153CrossRefGoogle Scholar
  79. 79.
    Zhang Y, Henriet J P, Bursens J, et al. Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor. Bioresour Technol, 2010, 101: 3132–3138CrossRefGoogle Scholar
  80. 80.
    Zhang Y, Maignien L, Zhao X X, et al. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiol, 2011, 11: 137CrossRefGoogle Scholar
  81. 81.
    Zeng X, Birrien J L, Fouquet Y, et al. Pyrococcus CH1, an obligate piezophilic hyperthermophile: Extending the upper pressure-temperature limits for life. ISME J, 2009, 3: 873–876CrossRefGoogle Scholar
  82. 82.
    Imachi H, Aoi K, Tasumi E, et al. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J, 2011, 5: 1913–1925CrossRefGoogle Scholar
  83. 83.
    Takano Y, Chikaraishi Y, Ogawa N O, et al. Sedimentary membrane lipids recycled by deep-sea benthic archaea. Nat Geosci, 2010, 3: 858–861CrossRefGoogle Scholar
  84. 84.
    Lasken R S. Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol, 2007, 10: 510–516CrossRefGoogle Scholar
  85. 85.
    Behrens S, Loesekann T, Pett-Ridge J, et al. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl Environ Microbiol, 2008, 74: 3143–3150CrossRefGoogle Scholar
  86. 86.
    Nunoura T, Takaki Y, Kakuta J, et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res, 2011, 39: 3204–3223CrossRefGoogle Scholar
  87. 87.
    Hallam S J, Mincer T J, Schleper C, et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol, 2006, 4: 520–536CrossRefGoogle Scholar
  88. 88.
    Illuminating earth through subseafloor sampling, observation, and experimentation: The international ocean discovery program, science plan for 2013–2023. Washington DC: IWG Supporting Office, 2010Google Scholar
  89. 89.
    Xie S, Yang H, Luo G, et al. Geomicrobial functional groups: A window on the interaction between life and environments. Chin Sci Bull, 2012, 57: 2–19CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • FengPing Wang
    • 1
    • 2
  • ShuLin Lu
    • 1
  • Beth N. Orcutt
    • 3
    • 4
  • Wei Xie
    • 5
  • Ying Chen
    • 1
    • 2
  • Xiang Xiao
    • 1
  • Katrina J. Edwards
    • 6
  1. 1.State Key Laboratory of Microbial Metabolism and State Key Laboratory of Ocean EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Key Laboratory of Systems Biomedicine, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Center for GeomicrobiologyAarhus UniversityAarhus CDenmark
  4. 4.Bigelow Laboratory for Ocean SciencesEast BoothbayUSA
  5. 5.School of Ocean and Earth SciencesTongji UniversityShanghaiChina
  6. 6.Departments of Biological & Earth SciencesThe University of Southern CaliforniaLos AngelesUSA

Personalised recommendations