Chinese Science Bulletin

, Volume 57, Issue 28–29, pp 3748–3760 | Cite as

Late quaternary glacial cycle and precessional period of clay mineral assemblages in the western pacific warm pool

  • JiaWang Wu
  • ZhiFei LiuEmail author
  • Chao Zhou
Open Access
Article Progress of Projects Supported by NSFC Oceanology


Variability of clay mineral assemblages in the Western Pacific Warm Pool (WPWP) over the past 370 ka shows the prominent glacial-interglacial cyclicity. Smectite (62%–91%) is the dominant clay mineral, with decreased contents during interglacials while increased in glacials. In contrast, variations in chlorite (4%–21%), illite (4%–12%), and kaolinite (2%–10%) share a similar pattern with higher contents during interglacials than glacials, mirroring to that of smectite. The results indicate that the smectite-dominated clay minerals derive mainly from the river detrital inputs of New Guinea. The glacial-interglacial cycle of clay mineral assemblages well correspond to the fluctuation of sea level. When the sea level was low, the river materials can travel more easily across the narrow shelf off the island of New Guinea, inject directly into the subsurface currents flowing westwards, then merge into the Equatorial Undercurrent (EUC), and eventually deposit on the central part of WPWP. Precessional periods of the smectite content indicate the intensity of mechanical erosion in its provenance of New Guinea, responding to the river runoff and precipitation, and this could also be linked to the meridional migration of the Intertropical Convergence Zone (ITCZ).


clay minerals glacial cycle precessional period Intertropical Convergence Zone (ITCZ) late Quaternary Western Pacific Warm Pool (WPWP) 


  1. 1.
    Wang P. Global monsoon in a geological perspective. Chin Sci Bull, 2009, 54: 1113–1136CrossRefGoogle Scholar
  2. 2.
    Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the intertropical convergence zone through the Holocene. Science, 2001, 293: 1304–1308CrossRefGoogle Scholar
  3. 3.
    Wang X F, Auler A S, Edwards R L, et al. Wet periods in northeastern Brazil over the past 210 ka linked to distant climate anomalies. Nature, 2004, 432: 740–743CrossRefGoogle Scholar
  4. 4.
    Yancheva G N, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 2007, 445: 74–77CrossRefGoogle Scholar
  5. 5.
    Milliman J D, Syvitski J M. Geomorphic/tectonic control of sediment discharge to the ocean: The Importance of small mountainous Rivers. J Geol, 1992, 100: 525–544CrossRefGoogle Scholar
  6. 6.
    Milliman J D. Sediment discharge to the ocean from small mountainous rivers: The New Guinea example. Geo-Mar Lett, 1995, 15: 127–133CrossRefGoogle Scholar
  7. 7.
    Milliman J D, Farnsworth K L, Albertin A S. Flux and fate of fluvial sediments leaving large islands in the East Indies. J Sea Res, 1999, 41: 97–107CrossRefGoogle Scholar
  8. 8.
    Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial Pacific sea surface temperature variations. Science, 2000, 289: 1719–1724CrossRefGoogle Scholar
  9. 9.
    Rosenthal Y, Oppo D W, Linsley B K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific. Geophys Res Lett, 2003, 30: 8CrossRefGoogle Scholar
  10. 10.
    Kineke G C, Woolfe K J, Kuehl S A, et al. Sediment export from the Sepik River, Papua New Guinea: Evidence for a divergent sediment plume. Cont Shelf Res, 2000, 20: 2239–2266CrossRefGoogle Scholar
  11. 11.
    Walsh J P, Nittrouer C A. Contrasting styles of off-shelf sediment accumulation in New Guinea. Mar Geol, 2003, 196: 105–125CrossRefGoogle Scholar
  12. 12.
    Chamley H. Clay Sedimentology. Berlin: Springer, 1989. 1–623Google Scholar
  13. 13.
    Colin C H, Turpin L, Bertaux J, et al. Erosional history of the Himalayan and Burman ranges during the last two glacial-interglacial cycles. Earth Planet Sci Lett, 1999, 171: 647–660CrossRefGoogle Scholar
  14. 14.
    Gingele F X, De Deckker P, Hillenbrand C D. Clay mineral distribution in surface sediments between Indonesia and NW Australia-source and transport by ocean currents. Mar Geol, 2001, 179: 135–146CrossRefGoogle Scholar
  15. 15.
    Liu Z F, Trentesaux A, Clemens S C, et al. Clay mineral assemblages in the northern South China Sea: Implications for East Asian monsoon evolution over the past 2 million years. Mar Geol, 2003, 201: 133–146CrossRefGoogle Scholar
  16. 16.
    Sholkovitz E R, Elderfield H, Szymczak R, et al. Island weathering: River sources of rare earth elements to the Western Pacific Ocean. Mar Chem, 1999, 68: 39–57CrossRefGoogle Scholar
  17. 17.
    Lacan F, Jeandel C. Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and Rare Earth Element patterns. Earth Planet Sci Lett, 2001, 186: 497–512CrossRefGoogle Scholar
  18. 18.
    Mackey D J, O’sullivan J E, Watson R J. Iron in the western Pacific: A riverine or hydrothermal source for iron in the Equatorial Undercurrent? Deep-Sea Res Pt I, 2002, 49: 877–893CrossRefGoogle Scholar
  19. 19.
    van der Kaars S, Wang X, Kershaw P, et al. A Late Quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia. Palaeogeogr Palaeoclimatol Palaeoecol, 2000, 155: 135–153CrossRefGoogle Scholar
  20. 20.
    Kershaw A P, van der Kaars S, Moss P T. Late Quaternary Milankovitchscale climatic change and variability and its impact on monsoonal Australasia. Mar Geol, 2003, 201: 81–95CrossRefGoogle Scholar
  21. 21.
    Commission for the Geological Map of the World, 1975. Geological World Atlas, scale 1:10000000. UN Educ. Sci Cult Org, ParisGoogle Scholar
  22. 22.
    Chappell J. Contrasting Holocene sedimentary geologies of lower Daly River, northern Australia, and lower Sepik-Ramu, Papua New Guinea. Sediment Geol, 1993, 83: 339–358CrossRefGoogle Scholar
  23. 23.
    Kuehl S A, Brunskill G J, Burns K, et al. Nature of sediment dispersal off the Sepik River, Papua New Guinea: Preliminary sediment budget and implications for margin processes. Cont Shelf Res, 2004, 24: 2417–2429CrossRefGoogle Scholar
  24. 24.
    Brunskill G. New Guinea and its coastal seas, a testable model of wettropical coastal processes: An introduction to Project TROPICS. Cont Shelf Res, 2004, 24: 2273–2295CrossRefGoogle Scholar
  25. 25.
    Lindstrom E, Lukas R, Fine R, et al. The Westem Equatorial Pacific Ocean circulation study. Nature, 1987, 330: 533–537CrossRefGoogle Scholar
  26. 26.
    Tsuchiya M, Lukas R, Fine R, et al. Source waters of the Pacific Equatorial Undercurrent. Prog Oceanogr, 1989, 23: 101–147CrossRefGoogle Scholar
  27. 27.
    Butt J, Lindstrom E. Currents off the east-coast of New-Ireland, Papua-New-Guinea, and their relevance to regional undercurrents in the Western Equatorial Pacific-Ocean. J Geophys Res-Oceans, 1994, 99: 12503–12514CrossRefGoogle Scholar
  28. 28.
    Fine R, Lukas R, Bingham F, et al. The Western Equatorial Pacific -A Water Mass Crossroads. J Geophys Res-Oceans, 1994, 99: 25063–25080CrossRefGoogle Scholar
  29. 29.
    Cresswell G R. Coastal currents of northern Papua New Guinea, and the Sepik River outflow. Mar Freshwater Res, 2000, 51: 553–564CrossRefGoogle Scholar
  30. 30.
    Zhou C, Jin H, Jian Z. Variations of the late quaternary Paleoproductivity in the western equatorial Pacific: Evidence from the elemental ratios (in Chinese). Quat Sci, 2011, 31: 1–9Google Scholar
  31. 31.
    Holtzapffel T. Les minéraux argileux: Préparation, analyse diffractométrique et determination. Soc Géol Nord Publ 12, 1985. 1–136Google Scholar
  32. 32.
    Liu Z, Colin C, Trentesaux A, et al. Erosional history of the eastern Tibetan Plateau over the past 190 ka: Clay mineralogical and geochemical investigations from the southwestern South China Sea. Mar Geol, 2004, 209: 1–18CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Liu Z, Colin C, Li X, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Mar Geol, 2010, 277: 48–60CrossRefGoogle Scholar
  35. 35.
    Petschick R, Kuhn G, Gingele F. Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Mar Geol, 1996, 130: 203–229CrossRefGoogle Scholar
  36. 36.
    Liu Z F, Zhao Y L, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments. Appl Geochem, 2009, 24: 2195–2205CrossRefGoogle Scholar
  37. 37.
    Kuhn G, Diekmann B. Late Quaternary variability of ocean circulation in the southeastern South Atlantic inferred from the terrigenous sediment record of a drift deposit in the southern Cape Basin (ODP Site 1089). Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 182: 287–303CrossRefGoogle Scholar
  38. 38.
    Diekmann B, Kuhn G. Sedimentary record of the mid-Pleistocene climate transition in the southeastern South Atlantic (ODP Site 1090). Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 182: 241–258CrossRefGoogle Scholar
  39. 39.
    Revel M, Ducassou E, Grousset F, et al. 100000 years of African monsoon variability recorded in sediments of the Nile margin. Quat Sci Rev, 2010, 29: 1342–1362CrossRefGoogle Scholar
  40. 40.
    Schulz M, Mudelsee M. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput Geosci, 2002, 28: 421–426CrossRefGoogle Scholar
  41. 41.
    Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull, 1965, 76: 803–832CrossRefGoogle Scholar
  42. 42.
    Griffin J J, Windom H, Goldberg E D. The distribution of clay minerals in the world ocean. Deep Sea Res Oceanogr Abs, 1968, 15: 433–459CrossRefGoogle Scholar
  43. 43.
    Fagel N. Clay minerals, deep circulation and climate. In: Hillaire-Marcel C, De Vernal A, eds. Proxies in Late Cenozoic Paleoceanography. Paris: Elservier, 2007. 139–184CrossRefGoogle Scholar
  44. 44.
    Grinffin G M. Regional clay mineral facies-products of weathering intensity and current distribution in the northeastern Gulf of Mexico. Geol Soc Am Bull, 1962, 73: 737–768CrossRefGoogle Scholar
  45. 45.
    Thiry M. Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Sci Rev, 2000, 49: 201–221CrossRefGoogle Scholar
  46. 46.
    Banerjee N, Honnorez J, Muehlenbachs K. Low-temperature alteration of submarine basalts from the Ontong Java Plateau. In: Fitton J G, Mahoney J J, Wallace P J, eds. Origin and Evolution of the Ontong Java Plateau. London: Geological Society, 2005. 259–273Google Scholar
  47. 47.
    Chen T, Wang H, Zhang Z, et al. Clay minerals as indicators of paleoclimate (in Chinese). Acta Petrol Mineral, 2003, 22: 416–420Google Scholar
  48. 48.
    Krissek L A, Janecek T R. Eolian deposition on the Ontong Java Plateau since the Oligocene: Unmixing a record of multiple dust sources. In: Berger W H, Kroenke L W, Mayer L A, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 1993, 130: 471–490Google Scholar
  49. 49.
    Rea D K. The paleoclimatic record provided by eolian deposition in the deep-sea-the geologic history of wind. Rev Geophys, 1994, 32: 159–195CrossRefGoogle Scholar
  50. 50.
    Zhang J Y, Wang P X, Li Q Y, et al. Western equatorial Pacific productivity and carbonate dissolution over the last 550 ka: Foraminiferal and nannofossil evidence from ODP Hole 807A. Mar Micropaleontol, 2007, 64: 121–140CrossRefGoogle Scholar
  51. 51.
    Patterson D B, Farley K A, Norman M D. He-4 as a tracer of continental dust: A 1.9 million year record of aeolian flux to the west equatorial Pacific Ocean. Geochim Cosmochim Acta, 1999, 63: 615–625CrossRefGoogle Scholar
  52. 52.
    Winckler G, Anderson R F, Fleisher M Q, et al. Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica. Science, 2008, 320: 93–96CrossRefGoogle Scholar
  53. 53.
    Guo Z T, Berger A, Yin Q Z, et al. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim Past, 2009, 5: 21–31CrossRefGoogle Scholar
  54. 54.
    Anderson R F, Fleisher M Q, Lao Y. Glacial-interglacial variability in the delivery of dust to the central equatorial Pacific Ocean. Earth Planet Sci Lett, 2006, 242: 406–414CrossRefGoogle Scholar
  55. 55.
    McGee D, Marcantonio F, Lynch-Stieglitz J. Deglacial changes in dust flux in the eastern equatorial Pacific. Earth Planet Sci Lett, 2007, 257: 215–230CrossRefGoogle Scholar
  56. 56.
    Ziegler C L, Murray R W, Plank T, et al. Sources of Fe to the equatorial Pacific Ocean from the Holocene to Miocene. Earth Planet Sci Lett, 2008, 270: 258–270CrossRefGoogle Scholar
  57. 57.
    Kalm V E, Rutter N W, Rokosh C D. Clay minerals and their pale-oenvironmental interpretation in the Baoji loess section, Southern Loess Plateau, China. Catena, 1996, 27: 49–61CrossRefGoogle Scholar
  58. 58.
    Gylesjo S, Arnold E. Clay mineralogy of a red clay-loess sequence from Lingtai, the Chinese Loess Plateau. Glob Planet Change, 2006, 51: 181–194CrossRefGoogle Scholar
  59. 59.
    Mackie D S, Boyd P W, McTainsh G H, et al. Biogeochemistry of iron in Australian dust: From eolian uplift to marine uptake. Geochem Geophys Geosys, 2008, 9: Q03Q08CrossRefGoogle Scholar
  60. 60.
    Gao Y, Fan S M, Sarmiento J L. Aeolian iron input to the ocean through precipitation scavenging: A modeling perspective and its implication for natural iron fertilization in the ocean. J Geophys Res-Atmos, 2003, 108: D7Google Scholar
  61. 61.
    Duce R A, Tindale N W. Atmospheric transport of iron and its deposition in the ocean. Limnol Oceanogr, 1991, 36: 1715–1726CrossRefGoogle Scholar
  62. 62.
    Gao Y, Kaufman Y J, Tanre D, et al. Seasonal distributions of aeolian iron fluxes to the global ocean. Geophys Res Lett, 2001, 28: 29–32CrossRefGoogle Scholar
  63. 63.
    Wells M L, Vallis G K, Silver E A. Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean. Nature, 1999, 398: 601–604CrossRefGoogle Scholar
  64. 64.
    Lyle M, Pisias N, Paytan A, et al. Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific? Paleoceanography, 2005, 20: Pa1005CrossRefGoogle Scholar
  65. 65.
    Lyle M, Pisias N, Paytan A, et al. Reply to comment by R. Francois et al. on “Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific”: Further explorations of 230Th normalization. Paleoceanography, 2007, 22: Pa1217CrossRefGoogle Scholar
  66. 66.
    Martin C E, Peucker-Ehrenbrink B, Brunskill G J, et al. Sources and sinks of unradiogenic osmium runoff from Papua New Guinea. Earth Planet Sci Lett, 2000, 183: 261–274CrossRefGoogle Scholar
  67. 67.
    Coale K H, Fitzwater S E, Gordon R M, et al. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature, 1996, 379: 621–624CrossRefGoogle Scholar
  68. 68.
    Gordon R M, Coale K H, Johnson K S. Iron distributions in the equatorial Pacific: Implications for new production. Limnol Oceanogr, 1997, 42: 419–431CrossRefGoogle Scholar
  69. 69.
    Ryan J P, Ueki I, Chao Y, et al. Western Pacific modulation of large phytoplankton blooms in the central and eastern equatorial Pacific. J Geophys Res-Biogeol, 2006, 111: G02013CrossRefGoogle Scholar
  70. 70.
    Kawahata H. Fluctuations in the ocean environment within the western Pacific warm pool during late Pleistocene. Paleoceanography, 1999, 14: 639–652CrossRefGoogle Scholar
  71. 71.
    Ruddiman W F. Earth’s Climate: Past and Future. New York: W. H. Freeman and Company. 2001. 1–465Google Scholar
  72. 72.
    Wang X F, Auler A S, Edwards R L, et al. Interhemispheric anti-phasing of rainfall during the last glacial period. Quat Sci Rev, 2006, 25: 3391–3403CrossRefGoogle Scholar
  73. 73.
    Turney C M, Kershaw A P, Clemens S C, et al. Millennial and orbital variations of El Nino/Southern Oscillation and high-latitude climate in the last glacial period. Nature, 2004, 428: 306–310CrossRefGoogle Scholar
  74. 74.
    Muller J, Kylander M, Wust R, et al. Possible evidence for wet Heinrich phases in tropical NE Australia: The Lynch’s Crater deposit. Quatern Sci Rev, 2008, 27: 468–475CrossRefGoogle Scholar
  75. 75.
    Partridge T C. Cainozoic environmental change in southern Africa, with special emphasis on the last 200000 years. Prog Phys Geogr, 1997, 21: 3–22CrossRefGoogle Scholar
  76. 76.
    Partridge T C, Demenocal P B, Lorentz S A, et al. Orbital forcing of climate over South Africa: A 200000-year rainfall record from the Pretoria Saltpan. Quat Sci Rev, 1997, 16: 1125–1133CrossRefGoogle Scholar
  77. 77.
    Cruz F W, Burns S J, Karmann I, et al. Insolation-driven changes in atmospheric circulation over the past 116000 years in subtropical Brazil. Nature, 2005, 434: 63–66CrossRefGoogle Scholar
  78. 78.
    Liu Z, Brady E, Lynch-Stieglitz J. Global ocean response to orbital forcing in the Holocene. Paleoceanography, 2003, 18: 1041CrossRefGoogle Scholar
  79. 79.
    Wyrwoll K H, Valdes P. Insolation forcing of the Australian monsoon as controls of Pleistocene mega-lake events. Geophys Res Lett, 2003, 30: 2279CrossRefGoogle Scholar
  80. 80.
    Wyrwoll K H, Liu Z Y S, Chen G, et al. Sensitivity of the Australian summer monsoon to tilt and precession forcing. Quat Sci Rev, 2007, 26: 3043–3057CrossRefGoogle Scholar
  81. 81.
    Kutzbach J E, Liu X D, Liu Z Y, et al. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280000 years. Clim Dyn, 2008, 30: 567–579CrossRefGoogle Scholar
  82. 82.
    Bowler J M, Wyrwoll K H, Lu Y C. Variations of the northwest Australian summer monsoon over the last 300000 years: The paleohydrological record of the Gregory (Mulan) Lakes System. Quat Int, 2001, 83–85: 63–80CrossRefGoogle Scholar
  83. 83.
    Holbourn A, Kuhnt W, Kawamura H, et al. Orbitally paced paleoproductivity variations in the Timor Sea and Indonesian Throughflow variability during the last 460 ka. Paleoceanography, 2005, 20: Pa3002CrossRefGoogle Scholar
  84. 84.
    Liu T S, Ding Z L. Chinese loess and the paleomonsoon. Annu Rev Earth Planet Sci, 1998, 26: 111–145CrossRefGoogle Scholar
  85. 85.
    An Z S. The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev, 2000, 19: 171–187CrossRefGoogle Scholar
  86. 86.
    Magee J W, Miller G H, Spooner N A, et al. Continuous 150 ky monsoon record from Lake Eyre, Australia: Insolation-forcing implications and unexpected Holocene failure. Geology, 2004, 32: 885–888CrossRefGoogle Scholar
  87. 87.
    Miller G, Mangan J, Pollard D, et al. Sensitivity of the Australian Monsoon to insolation and vegetation: Implications for human impact on continental moisture balance. Geology, 2005, 33: 65–68CrossRefGoogle Scholar
  88. 88.
    Luckge A, Mohtadi M, Ruhlemann C, et al. Monsoon versus ocean circulation controls on paleoenvironmental conditions off southern Sumatra during the past 300000 years. Paleoceanography, 2009, 24: PA1208CrossRefGoogle Scholar
  89. 89.
    Mohtadi M, Luckge A, Steinke S, et al. Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean. Quat Sci Rev, 2010, 29: 887–896CrossRefGoogle Scholar
  90. 90.
    Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling. Geophys Res Lett, 2006, 33: L01702CrossRefGoogle Scholar
  91. 91.
    Prell W L, Kutzbach J E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 1992, 360: 647–652CrossRefGoogle Scholar
  92. 92.
    Liu Z, Tuo S, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Mar Geol, 2008, 255: 149–155CrossRefGoogle Scholar
  93. 93.
    Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth. A&A, 2004, 428: 261–285CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.State Key Laboratory of Marine GeologyTongji UniversityShanghaiChina

Personalised recommendations