Chinese Science Bulletin

, Volume 57, Issue 26, pp 3469–3481 | Cite as

Ductile deformation within Upper Himalaya Crystalline Sequence and geological implications, in Nyalam area, Southern Tibet

  • XiaoBing LiuEmail author
  • XiaoHan Liu
  • P. H. Leloup
  • G. Maheo
  • J. L. Paquette
  • XinGang Zhang
  • XueJun Zhou
Open Access
Article Geology


The South Tibet Detachment System (STDS) is a flat normal fault that separates the Upper Himalaya Crystalline Sequence (UHCS) below from the Tethyan Sedimentary Sequence (TSS) above. Timing of deformations related to the STDS is critical to understand the mechanism and evolution of the Himalaya collision zone. The Nyalam detachment (ND) (∼86°E) locates in the middle portion of STDS (81°–89°E). Dating of deformed leucocratic dykes that are most probably syntectonic at different depth beneath the ND, allow us to constrain the timing of deformation. (1) Dyke T11N37 located ∼3500 m structurally below the ND emplaced at 27.4±0.2 Ma; (2) Dyke T11N32 located ∼1400 m structurally below the ND emplaced at 22.0±0.3 Ma; (3) T11N25 located within the top to the north STD shear zone, ∼150 m structurally below the ND, emplaced at 17.1±0.2 Ma. Combining ND footwall cooling history and T11N25 deformation temperature, we indicate a probable onset of top to the north deformation at ∼16 Ma at this location. These results show an upward younging of the probable timing of onset of the deformation at different structural distance below the ND. We then propose a new model for deformation migration below the ND with deformation starting by pure shear deformation at depth prior to ∼27.5 Ma that migrates upward at a rate of ∼ 0.3 mm/a until ∼18 Ma when deformation switches to top to the north shearing in the South Tibet Detachment shear zone (STDsz). As deformation on the ND stops at 14-13 Ma this would imply that significant top to the North motion would be limited to less than 5 Ma and would jeopardize the importance of lower channel flow.


Upper Himalaya Crystalline Sequence (UHCS) South Tibet Detachment shear zone (STDsz) Nyalam detachment (ND) monazite-zircon U-Th/Pb dating deformation migration 

Supplementary material

11434_2012_5228_MOESM1_ESM.pdf (317 kb)
Supplementary material, approximately 317 KB.


  1. 1.
    Burg J P, Brunel M, Gapais D, et al. Deformation of leucogranites of the crystalline Main Central Sheet in Southern Tibet (China). J Struct Geol, 1984, 6: 535–542CrossRefGoogle Scholar
  2. 2.
    Brown R L, Nazarchuk J H. Annapurna Detachment Fault in the Greater Himalaya of Central Nepal. Geol Soc Lond spec publ, 1993, 74: 461–473CrossRefGoogle Scholar
  3. 3.
    Cottle J M, Jessup M J, Newell D L, et al. Structural insights into the early stages of exhumation along an orogen-scale detachment: The South Tibetan Detachment System, Dzakaa Chu section, eastern Himalaya. J Struct Geol, 2007, 29: 1781–1797CrossRefGoogle Scholar
  4. 4.
    Cottle J M, Searle M P, Horstwood M S A, et al. Timing of midcrustal metamorphism, melting, and deformation in the mount Everest region of Southern Tibet revealed by U(-Th)-Pb geochronology. J Geol, 2009, 117: 643–664CrossRefGoogle Scholar
  5. 5.
    Godin L, Brown R L, Hanmer S, et al. Back folds in the core of the Himalayan orogen: An alternative interpretation. Geology, 1999, 27: 151–154CrossRefGoogle Scholar
  6. 6.
    Godin L, Parrish R R, Brown R L, et al. Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: Insight from U-Pb Geochronology and 40Ar/39Ar Thermochronology. Tectonics, 2001, 20: 729–747CrossRefGoogle Scholar
  7. 7.
    Guillot S, Hodges K, Lefort P, et al. New constraints on the age of the Manaslu leucogranite: Evidence for episodic tectonic denudation in the central Himalayas. Geology, 1994, 22: 559–562CrossRefGoogle Scholar
  8. 8.
    Harrison T M, Grove M, McKeegan K D, et al. Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya. J Petrol, 1999, 40: 3–19CrossRefGoogle Scholar
  9. 9.
    Harrison T M, Mckeegan K D, Lefort P. Detection of inherited monazite in the Manaslu leucogranite by 208Pb/232Th ion microprobe dating-crystallization age and tectonic implications. Earth Planet Sci Lett, 1995, 133: 271–282CrossRefGoogle Scholar
  10. 10.
    Harrison T M, Ryerson F J, LeFort P, et al. A late Miocene-Pliocene origin for the Central Himalayan inverted metamorphism. Earth Planet Sci Lett, 1997, 146: E1–E7CrossRefGoogle Scholar
  11. 11.
    Hodges K, Bowring S, Davidek K, et al. Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges. Geology, 1998, 26: 483–486CrossRefGoogle Scholar
  12. 12.
    Hodges K V, Parrish R R, Searle M P. Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics, 1996, 15: 1264–1291CrossRefGoogle Scholar
  13. 13.
    Kali E, Leloup P H, Arnaud N, et al. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure-temperature-deformation-time constraints on orogenic models. Tectonics, 2010, 29: 1–31CrossRefGoogle Scholar
  14. 14.
    Leloup P H, Maheo G, Arnaud N, et al. The South Tibet Detachment shear zone in the Dinggye area Time constraints on extrusion models of the Himalayas. Earth Planet Sci Lett, 2010, 292: 1–16CrossRefGoogle Scholar
  15. 15.
    Murphy M A, Harrison T M. Relationship between leucogranites and the Qomolangma Detachment in the Rongbuk Valley, south Tibet. Geology, 1999, 27: 831–834CrossRefGoogle Scholar
  16. 16.
    Noble S R, Searle M P. Age of crustal melting and leucogranite formation from U-Pb zircon and monazite dating in the western Himalaya, Zanskar, India. Geology, 1995, 23: 1135–1138CrossRefGoogle Scholar
  17. 17.
    Sakai H, Sawada M, Takigami Y, et al. Geology of the summit limestone of Mount Qomolangma (Everest) and cooling history of the Yellow Band under the Qomolangma Detachment. Isl Arc, 2005, 14: 297–310CrossRefGoogle Scholar
  18. 18.
    Searle M P, Godin L. The South Tibetan Detachment and the Manaslu leucogranite: A structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. J Geol, 2003, 111: 505–523Google Scholar
  19. 19.
    Searle M P, Parrish R R, Hodges K V, et al. Shisha Pangma leucogranite, south Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. J Geol, 1997, 105: 295–317CrossRefGoogle Scholar
  20. 20.
    Streule M J, Searle M P, Waters D J, et al. Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: Constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics, 2010, 29: TC5011CrossRefGoogle Scholar
  21. 21.
    Wang Y, Li Q, Qu G S. 40Ar/39Ar thermochronological constraints on the cooling and exhumation history of the South Tibetan Detachment System, Nyalam area, southern Tibet. In: Law R D, Searle M P, Godin L, eds. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geol Soc Lond spec publ, 2006, 268: 327–354Google Scholar
  22. 22.
    Yu J J, Zeng L S, Liu J, et al. Early Miocene leucogranites in Dinggye area, southern Tibet: Formation mechanism and tectonic implications (in Chinese). Acta Petrol Sin, 2011, 27: 1961–1972Google Scholar
  23. 23.
    Coleman M E. U-Pb constraints on oligocene-miocene deformation and anatexis within the central Himalaya, Marsyandi valley, Nepal. Am J Sci, 1998, 298: 553–571CrossRefGoogle Scholar
  24. 24.
    Yang X Y, Zhang J J, Qi G W, et al. Structure and deformation around the Gyirong basin, north Himalaya, and onset of the South Tibetan Detachment System. Sci China Earth Sci, 2009, 52: 1046–1058CrossRefGoogle Scholar
  25. 25.
    Cottle J M, Waters D J, Riley D, et al. Metamorphic history of the South Tibetan Detachment System, Mt. Everest region, revealed by RSCM thermometry and phase equilibria modelling. J Metamorph Geol, 2011, 29: 561–582CrossRefGoogle Scholar
  26. 26.
    Burchfiel B C, Chen Z, Hodges K V, et al. Detachment System, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geo Soc Am spec publ, 1992, 269: 1–41Google Scholar
  27. 27.
    Burg J P. Carte Géologique du Sud Tibet. In: Mo Geology/CNRS, ed, Ministry of Geology/CNRS, Beijing/Paris, 1983Google Scholar
  28. 28.
    Carosi R, Lombardo B, Molli G, et al. The South Tibetan Detachment System in the Rongbuk valley, Everest region. Deformation features and geological implications. J Asian Earth Sci, 1998, 16: 299–311CrossRefGoogle Scholar
  29. 29.
    Edwards M A, Kidd W S F, Li J X, et al. Multi-stage development of the Southern Tibet Detachment System near Khula Kangri. New data from Gonto La. Tectonophysics, 1996, 260: 1–19CrossRefGoogle Scholar
  30. 30.
    Zhang J J, Santosh M, Wang X X, et al. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Res, 2012, 21: 939–960CrossRefGoogle Scholar
  31. 31.
    Harris N B W, Caddick M, Kosler J, et al. The pressure-temperature-time path of migmatites from the Sikkim Himalaya. J Metamorph Geol, 2004, 22: 249–264CrossRefGoogle Scholar
  32. 32.
    Godin L, Grujic D, Law R D, et al. Channel flow, ductile extrusion and exhumation in continental collision zones: An introduction. In: Law R D, Searle M P, Godin L, eds. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geol Soc Lond spec publ, 2006, 268: 1–23Google Scholar
  33. 33.
    Yin A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev, 2006, 76: 1–131CrossRefGoogle Scholar
  34. 34.
    Zhu T X, Zou G F, Li J Z, et al. Report of Regional Geological Survey of Nielam County (1/250 000) (in Chinese). Beijing: Geological Publishing House, 2002. 1–363Google Scholar
  35. 35.
    Law R D, Jessup M J, Searle M P, et al. Telescoping of isotherms beneath the South Tibetan Detachment System, Mount Everest Massif. J Struct Geol, 2011, 33: 1569–1594CrossRefGoogle Scholar
  36. 36.
    Wu C D, Nelson K D, Wortman G, et al. Yadong cross structure and South Tibetan Detachment in the east central Himalaya (89°–90°E).Tectonics, 1998, 17: 28–45CrossRefGoogle Scholar
  37. 37.
    Schärer U, Xu R H, Allegre C J. U-(Th)-Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth Planet Sci Lett, 1986, 77: 35–48CrossRefGoogle Scholar
  38. 38.
    Wang A, Garver J I, Wang G C, et al. Episodic exhumation of the Greater Himalayan Sequence since the Miocene constrained by fission track thermochronology in Nyalam, central Himalaya. Tectonophysics, 2010, 495: 315–323CrossRefGoogle Scholar
  39. 39.
    Stipp M, Stunitz H, Heilbronner R, et al. The eastern Tonale fault zone: A “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700 degrees C. J Struct Geol, 2002, 24: 1861–1884CrossRefGoogle Scholar
  40. 40.
    Tullis J A, Yund R A. The brittle-ductile transition in feldspar aggregates: An experimental study. In: Evans B, Wong T F, eds. Fault Mechanics and Transport Properties of Rocks. London: Academic Press, 1992. 89–117CrossRefGoogle Scholar
  41. 41.
    Seydoux-Guillaume A M, Wirth R, Deutsch A, et al. Microstructure of 24–1928 Ma concordant monazites: Implications for geochronology and nuclear waste deposits. Geochim Cosmochim Acta, 2004, 68: 2517–2527CrossRefGoogle Scholar
  42. 42.
    Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol, 2004, 211: 47–69CrossRefGoogle Scholar
  43. 43.
    Paquette J L, Tiepolo M. High resolution (5 μm) U-Th-Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol, 2007, 240: 222–237CrossRefGoogle Scholar
  44. 44.
    Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostand Newslett, 1995, 19: 1–23CrossRefGoogle Scholar
  45. 45.
    Ludwig K R. Isoplot 3.00 a geochronological toolkit for Microsoft Excel. Berkley Geoch Cent Spec Pub, 2003. 4Google Scholar
  46. 46.
    Tera F, Wasserburg G J. U-Th-Pb systematics in 3 Apollo 14 basalts and problem of initial Pb in Lunar rocks. Earth Planet Sci Lett, 1972, 14: 281–304CrossRefGoogle Scholar
  47. 47.
    Claoué-Long J, Compston W, Roberts J, et al. Two carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Berggren W A, Kent D V, Aubry M P, et al, eds. Geochronology, Time Scales & Stratigraphic Correlation. SEPM Spec Publ, 1995, 54: 1–22Google Scholar
  48. 48.
    Cherniak D J, Watson E B. Pb diffusion in zircon. Chem Geol, 2001, 172: 5–24CrossRefGoogle Scholar
  49. 49.
    Lee J K W, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon. Nature, 1997, 390: 159–162CrossRefGoogle Scholar
  50. 50.
    Clemens J D. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Sci Rev, 2003, 61: 1–18CrossRefGoogle Scholar
  51. 51.
    Hodges K V, Burchfiel B C, Royden L H, et al. The metamorphic signature of contemporaneous extension and shortening in the Central Himalayan Orogen-data from the Nyalam Transect, Southern Tibet. J Metamorph Geol, 1993, 11: 721–737CrossRefGoogle Scholar
  52. 52.
    Parrish R R. U-Pb dating of monazite and its application to geological problems. Can J Earth Sci, 1990, 27: 1431–1450CrossRefGoogle Scholar
  53. 53.
    Schärer U. The effect of initial 230Th disequilibrium on young U-Pb ages: The Makalu case, Himalaya. Earth Planet Sci Lett, 1984, 67: 191–204CrossRefGoogle Scholar
  54. 54.
    Stern R A, Sanborn N. Monazite U-Pb and Th-Ph geochronology by high-resolution secondary ion mass spectrometry. In: Radiogenic Age and Isotopic Studies. Curr Res Geol Surv Canada, Ottawa, 1998, 11: 1–18Google Scholar
  55. 55.
    Getty S R, Depaolo D J. Quaternary geochronology using the U-Th-Pb method. Geochim Cosmochim Acta, 1995, 59: 3267–3272CrossRefGoogle Scholar
  56. 56.
    Copeland P, Parrish R R, Harrison T M. Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics. Nature, 1988, 333: 760–763CrossRefGoogle Scholar
  57. 57.
    Spear F S, Parrish R R. Petrology and cooling rates of the Valhalla complex, British Columbia, Canada. J Petrol, 1996, 37: 733–765CrossRefGoogle Scholar
  58. 58.
    Braun I, Montel J M, Nicollet C. Electron microprobe dating of monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India. Chem Geol, 1998, 146: 65–85CrossRefGoogle Scholar
  59. 59.
    Cocherie A, Mezeme E B, Legendre O, et al. Electron-microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites. Am Mineral, 2005, 90: 607–618CrossRefGoogle Scholar
  60. 60.
    Foster G, Gibson H D, Parrish R, et al. Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chem Geol, 2002, 191: 183–207CrossRefGoogle Scholar
  61. 61.
    Clemens J D, Vielzeuf D. Constraints on melting and magma production in the crust. Earth Planet Sci Lett, 1987, 86: 287–306CrossRefGoogle Scholar
  62. 62.
    Montel J M. A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol, 1993, 110: 127–146CrossRefGoogle Scholar
  63. 63.
    Scaillet B, Pichavant M, Roux J. Experimental crystallization of leucogranite magmas. J Petrol, 1995, 36: 663–705Google Scholar
  64. 64.
    Searle M P. Emplacement of Himalayan leucogranites by magma injection along giant sill complexes: Examples from the Cho Oyu, Gyachung Kang and Everest leucogranites (Nepal Himalaya). J Asian Earth Sci, 2000, 17: 773–783CrossRefGoogle Scholar
  65. 65.
    Smith H A, Giletti B J. Lead diffusion in monazite. Geochim Cosmochim Acta, 1997, 61: 1047–1055CrossRefGoogle Scholar
  66. 66.
    Viskupic K, Hodges K V, Bowring S A. Timescales of melt generation and the thermal evolution of the Himalayan metamorphic core, Everest region, eastern Nepal. Contrib Mineral Petrol, 2005, 149: 1–21CrossRefGoogle Scholar
  67. 67.
    Kelsey D E, Clark C, Hand M. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: Examples using model metapelitic and metapsammitic granulites. J Metamorph Geol, 2008, 26: 199–212CrossRefGoogle Scholar
  68. 68.
    Orejana D, Merino E, Villaseca C, et al. Electron microprobe monazite geochronology of granitic intrusions from the Montes de Toledo batholith (central Spain). Geol J, 2012, 47: 41–58CrossRefGoogle Scholar
  69. 69.
    Daniel C G, Hollister L S, Parrish R R, et al. Exhumation of the Main Central Thrust from lower crustal depths, eastern Bhutan Himalaya. J Metamorph Geol, 2003, 21: 317–334CrossRefGoogle Scholar
  70. 70.
    Law R D, Searle M P, Simpson R L. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet. J Geol Soc Lond, 2004, 161: 305–320CrossRefGoogle Scholar
  71. 71.
    Agard P, Augier R, Monie P. Shear band formation and strain localization on a regional scale: Evidence from anisotropic rocks below a major detachment (Betic Cordilleras, Spain). J Struct Geol, 2011, 33: 114–131CrossRefGoogle Scholar
  72. 72.
    Behr W M, Platt J P. A naturally constrained stress profile through the middle crust in an extensional terrane. Earth Planet Sci Lett, 2011, 303: 181–192CrossRefGoogle Scholar
  73. 73.
    Cooper F J, Platt J P, Platzman E S, et al. Opposing shear senses in a subdetachment mylonite zone: Implications for core complex mechanics. Tectonics, 2010, 29: 1–18CrossRefGoogle Scholar
  74. 74.
    Davis G A. Rapid upward transport of mid-crustal mylonitic gneisses in the footwall of a Miocene Detachment Fault, Whipple Mountains, Southeastern California. Geol Rundsch, 1988, 77: 191–209CrossRefGoogle Scholar
  75. 75.
    Leloup P H, Liu X B, Mahéo G, et al. Quantification of progressive deformation localization below the STD shear zone (Himalaya). Geophys Res Abstract, 2012, 14: EGU2012–10235Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • XiaoBing Liu
    • 1
    • 2
    • 3
    Email author
  • XiaoHan Liu
    • 1
  • P. H. Leloup
    • 2
  • G. Maheo
    • 2
  • J. L. Paquette
    • 4
  • XinGang Zhang
    • 3
  • XueJun Zhou
    • 1
  1. 1.Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.Laboratoire des sciences de la terre de Lyon, Terre, Planètes, Environement, CNRS UMR 5276Université Lyon1 — ENS LyonVilleurbanneFrance
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina
  4. 4.Laboratoire Magmas et Volcans, CNRS UMR 6524Université Blaise PascalClermont-FerrandFrance

Personalised recommendations