Advertisement

Chinese Science Bulletin

, Volume 57, Issue 16, pp 1946–1952 | Cite as

Regulation of blood viscosity in disease prevention and treatment

  • Gan Chen
  • Lian Zhao
  • YaoWen Liu
  • FuLong Liao
  • Dong Han
  • Hong ZhouEmail author
Open Access
Review Preclinical Medicine

Abstract

Blood viscosity plays an important role in maintaining vascular homeostasis. Under normal physiological conditions, blood viscosity is kept at a relatively stable level by a variety of regulatory mechanisms. However, under pathological conditions, disorders in these regulatory mechanisms mediated by endothelial cell dysfunction result in the pathogenesis and development of certain diseases, such as cardio-cerebrovascular diseases, diabetes mellitus, and hemorrhagic shock. Therefore, monitoring and regulating blood viscosity are important for the diagnosis, treatment, and prognosis of disease. This article reviews the role of blood viscosity regulation and its importance in disease prevention and treatment.

Keywords

blood viscosity cardio-cerebrovascular diseases diabetes mellitus hemorrhagic shock endothelial dysfunction 

References

  1. 1.
    Dintenfass L. Rheology of Blood in Diagnostic and Preventive Medicine: An Introduction to Clinical Haemorheology. London, Boston: Butterworths, 1976. 396Google Scholar
  2. 2.
    Liao F L. Clinical Hemorheology (in Chinese). Tianjin: Tianjin Science & Technology Translation & Publishing Co, 1987. 210Google Scholar
  3. 3.
    Chen W J. Hemorheology (in Chinese). Tianjin: Tianjin Science and Technology Press, 1987. 322Google Scholar
  4. 4.
    Salazar Vazquez B Y, Martini J, Chavez Negrete A, et al. Cardiovascular benefits in moderate increases of blood and plasma viscosity surpass those associated with lowering viscosity: Experimental and clinical evidence. Clin Hemorheol Microcirc, 2010, 44: 75–85Google Scholar
  5. 5.
    Jeong S K, Cho Y I, Duey M, et al. Cardiovascular risks of anemia correction with erythrocyte stimulating agents: Should blood viscosity be monitored for risk assessment? Cardiovasc Drugs Ther, 2010, 24: 151–160CrossRefGoogle Scholar
  6. 6.
    Allen M T, Patterson S M. Hemoconcentration and stress: A review of physiological mechanisms and relevance for cardiovascular disease risk. Biol Psychol, 1995, 41: 1–27CrossRefGoogle Scholar
  7. 7.
    De Simone G, Devereux R, Chien S, et al. Relation of blood viscosity to demographic and physiologic variables and to cardiovascular risk factors in apparently normal adults. Circulation, 1990, 81: 107–117CrossRefGoogle Scholar
  8. 8.
    Pehlivanoglu B, Dikmenoglu N, Balkanci D Z. Effect of stress on erythrocyte deformability, influence of gender and menstrual cycle. Clin Hemorheol Microcirc, 2007, 37: 301–308Google Scholar
  9. 9.
    Boer D D, Ring C, Curlett A C, et al. Mental stress-induced hemoconcentration and its recovery: A controlled study of time course and mechanisms. Psychophysiology, 2007, 44: 161–169Google Scholar
  10. 10.
    Galduroz J C F, Antunes H K, Santos R F. Gender- and age-related variations in blood viscosity in normal volunteers: A study of the effects of extract of Allium sativum and Ginkgo biloba. Phytomedicine, 2007, 14: 447–451CrossRefGoogle Scholar
  11. 11.
    Gonez C, Donayre M, Villena A, et al. Hematocrit levels in children at sea level and at high altitude: Effect of adrenal androgens. Hum Biol, 1993, 65: 49–57Google Scholar
  12. 12.
    Temte J L. Elevation of serum cholesterol at high altitude and its relationship to hematocrit. Wilderness Environ Med, 1996, 7: 216–224CrossRefGoogle Scholar
  13. 13.
    Bassuni W, Asindi A A, Mustafa F S, et al. Hemoglobin and hematocrit values of Saudi newborns in the high altitude of Abha, Saudi Arabia. Ann Saudi Med, 1996, 16: 527–529Google Scholar
  14. 14.
    Erzurum S C, Ghosh S, Janocha A J, et al. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc Natl Acad Sci USA, 2007, 104: 17593–17598CrossRefGoogle Scholar
  15. 15.
    Cheng S K, Yu J Y, Si B H, et al. Study on the relationship of high hematocrit with changes of the blood viscosity during in the environment of altitude hypoxia (in Chinese). Chin J Appl Physiol, 2001, 17: 231–234Google Scholar
  16. 16.
    Martini J, Carpentier B, Chávez Negrete A, et al. Beneficial effects due to increasing blood and plasma viscosity. Clin Hemorheol Microcirc, 2006, 35: 51–57Google Scholar
  17. 17.
    Faeh D, Gutzwiller F, Bopp M, et al. Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland. Circulation, 2009, 120: 495–501CrossRefGoogle Scholar
  18. 18.
    De Simone G, Devereux R B, Chinali M, et al. Association of blood pressure with blood viscosity in american indians: The Strong Heart Study. Hypertension, 2005, 45: 625–630CrossRefGoogle Scholar
  19. 19.
    Salazar Vázquez B Y, Salazar Vázquez M A, Guajardo Jaquez M, et al. Blood pressure directly correlates with blood viscosity in diabetes type 1 children but not in normals. Clin Hemorheol Microcirc, 2010, 44: 55–61Google Scholar
  20. 20.
    Salazar Vázquez B Y, Vazquez M A, Intaglietta M, et al. Hematocrit and mean arterial blood pressure in pre- and postmenopause women. Vasc Health Risk Manag, 2009, 5: 483–488Google Scholar
  21. 21.
    Salazar Vázquez B Y, Intaglietta M, Rodríguez-Morán M, et al. Blood pressure and hematocrit in diabetes and the role of endothelial responses in the variability of blood viscosity. Diabetes Care, 2006, 29: 1523–1528CrossRefGoogle Scholar
  22. 22.
    Loscalzo J. Oxidative stress in endothelial cell dysfunction and thrombosis. Pathophysiol Haemost Thromb, 2002, 32: 359–360CrossRefGoogle Scholar
  23. 23.
    Lowe G D, Lee A J, Rumley A, et al. Blood viscosity and risk of cardiovascular events: The Edinburgh Artery Study. Br J Haematol, 1997, 96: 168–173CrossRefGoogle Scholar
  24. 24.
    Lee A J, Mowbray P I, Lowe G D, et al. Blood viscosity and elevated carotid intima-media thickness in men and women: The Edinburgh Artery Study. Circulation, 1998, 97: 1467–1473Google Scholar
  25. 25.
    Cecchi E, Marcucci R, Poli D, et al. Hyperviscosity as a possible risk factor for cerebral ischemic complications in atrial fibrillation patients. Am J Cardiol, 2006, 97: 1745–1748CrossRefGoogle Scholar
  26. 26.
    Woodward M, Rumley A, Tunstall-Pedoe H, et al. Does sticky blood predict a sticky end? Associations of blood viscosity, haematocrit and fibrinogen with mortality in the West of Scotland. Brit J Haematol, 2003, 122: 645–650CrossRefGoogle Scholar
  27. 27.
    Skretteberg P T, Bodegard J, Kjeldsen S E, et al. Interaction between inflammation and blood viscosity predicts cardiovascular mortality. Scand Cardiovasc J, 2010, 44: 107–112CrossRefGoogle Scholar
  28. 28.
    Cecchi E, Liotta A A, Gori A M, et al. Relationship between blood viscosity and infarct size in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Int J Cardiol, 2009, 134: 189–194CrossRefGoogle Scholar
  29. 29.
    Malinova L I, Dovgalevsky P Y. Hemorheological system in coronary heart disease patients: Prognostic value. Cardiovasc Ther Prev, 2007, 6: 19–24Google Scholar
  30. 30.
    Ciuffetti G, Schillaci G, Lombardini R, et al. Prognostic impact of low-shear whole blood viscosity in hypertensive men. Eur J Clin Invest, 2005, 35: 93–98CrossRefGoogle Scholar
  31. 31.
    Cohen J D. Overview of physiology, vascular biology, and mechanisms of hypertension. J Manag Care Pharm, 2007, 13: 6–8Google Scholar
  32. 32.
    Baron A D, Clark M G. Role of blood flow in the regulation of muscle glucose uptake. Annu Rev Nutr, 1997, 17: 487–499CrossRefGoogle Scholar
  33. 33.
    Hoieggen A, Fossum E, Moan A, et al. Whole-blood viscosity and the insulin-resistance syndrome. J Hypertens, 1998, 16: 203–210CrossRefGoogle Scholar
  34. 34.
    Ercan M, Konukoglu D. Role of plasma viscosity and plasma homocysteine level on hyperinsulinemic obese female subjects. Clin Hemorheol Microcirc, 2008, 38: 227–234Google Scholar
  35. 35.
    Richards R S, Nwose E U. Blood viscosity at different stages of diabetes pathogenesis. Br J Biomed Sci, 2010, 67: 67–70Google Scholar
  36. 36.
    Tamariz L J, Young J H, Pankow J S, et al. Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: The atherosclerosis risk in communities (ARIC) study. Am J Epidemiol, 2008, 168: 1153–1160CrossRefGoogle Scholar
  37. 37.
    Lowe G D, Lowe J M, Drummond M M, et al. Blood viscosity in young male diabetics with and without retinopathy. Diabetologia, 1980, 18: 359–363Google Scholar
  38. 38.
    Turczynski B, Michalska-Malecka K, Slowinska L, et al. Correlations between the severity of retinopathy in diabetic patients and whole blood and plasma viscosity. Clin Hemorheol Microcirc, 2003, 29: 129–137Google Scholar
  39. 39.
    Irace C, Scarinci F, Scorcia V, et al. Association among low whole blood viscosity, haematocrit, haemoglobin and diabetic retinopathy in subjects with type 2 diabetes. Br J Ophthalmol, 2011, 95: 94–98CrossRefGoogle Scholar
  40. 40.
    Schut N H, van Arkel E C, Hardeman M R, et al. Blood and plasma viscosity in diabetes: Possible contribution to late organ complications? Diabetes Res, 1992, 19: 31–35Google Scholar
  41. 41.
    Zhang X L, Wang X M, Liao L S. The significance of hemorheology changes in patients with diabetic nephropathy (in Chinese). Chin J Nephrol, 1993, 9: 348–349Google Scholar
  42. 42.
    Khodabandehlou T, Vimeux M, Le Devehat C. Measurements of transcutaneous oxygen pressure and changes in blood rheology as markers of prognosis of critically ischemic limb in diabetes mellitus patients. Int J Low Extrem Wounds, 2003, 2: 13–18CrossRefGoogle Scholar
  43. 43.
    Cohen R A. Role of nitric oxide in diabetic complications. Am J Ther, 2005, 12: 499–502CrossRefGoogle Scholar
  44. 44.
    Le Devehat C, Vimeux M, Khodabandehlou T. Blood rheology in patients with diabetes mellitus. Clin Hemorheol Microcirc, 2004, 30: 297–300Google Scholar
  45. 45.
    Giansanti R, Rabini R A, Boemi M. Blood rheology changes and disturbances in microcirculation. Clin Hernorheol, 1996, 16: 543–548Google Scholar
  46. 46.
    Vigilance J E, Reid H L. Glycaemic control influences peripheral blood flow and haemorheological variables in patients with diabetes mellitus. Clin Hemorheol Microcirc, 2005, 33: 337–346Google Scholar
  47. 47.
    Zanazzi M, Fatini C, Farsetti S, et al. Blood rheology and renal transplantation: An intriguing relationship for assessing cardiovascular risk. Transplant Proc, 2010, 42: 1383–1384CrossRefGoogle Scholar
  48. 48.
    Booth S, Chohan S, Curran J C, et al. Whole blood viscosity and arterial thrombotic events in patients with systemic lupus erythematosus. Arthritis Rheum, 2007, 57: 845–850CrossRefGoogle Scholar
  49. 49.
    Smith M M, Chen P C Y, Li C S, et al. Whole blood viscosity and microvascular abnormalities in Alzheimer’s Disease. Clin Hemorheol Microcirc, 2009, 41: 229–239Google Scholar
  50. 50.
    Chew S H, Tomic M M S, Cheung A T W. Alzheimer’s disease: More than amyloid. Clin Hemorheol Microcirc, 2010, 46: 69–73Google Scholar
  51. 51.
    Omoti C E, Omuemu C E, Olu-Eddo A N. The rheological profile of chronic liver disease patients in Nigeria. Clin Hemorheol Microcirc, 2009, 42: 279–284Google Scholar
  52. 52.
    Gokturk H S, Demir M, Ozturk N A, et al. Plasma viscosity changes in patients with liver cirrhosis. South Med J, 2009, 102: 1013–1018CrossRefGoogle Scholar
  53. 53.
    Fang N, Jiang L X, Zhang X S. Clinical observation of blood viscosity in patients with viral hepatitis (in Chinese). Chin J Hemorh, 2000, 10: 240–241Google Scholar
  54. 54.
    Halis H, Bor-Kucukatay M, Akin M, et al. Hemorheological parameters in children with iron-deficiency anemia and the alterations in these parameters in response to iron replacement. Pediatr Hematol Oncol, 2009, 26: 108–118CrossRefGoogle Scholar
  55. 55.
    Zhao L, Wang B, You G X, et al. Effects of different resuscitation fluids on the rheologic behavior of red blood cells, blood viscosity and plasma viscosity in experimental hemorrhagic shock. Resuscitation, 2009, 80: 253–258CrossRefGoogle Scholar
  56. 56.
    Wettstein R, Erni D, Intaglietta M, et al. Rapid restoration of microcirculatory blood flow with hyperviscous and hyperoncotic solutions lowers the transfusion trigger in resuscitation from hemorrhagic shock. Shock, 2006, 25: 641–646CrossRefGoogle Scholar
  57. 57.
    Wettstein R, Tsai A G, Erni D, et al. Improving microcirculation is more effective than substitution of red blood cells to correct metabolic disorder in experimental hemorrhagic shock. Shock, 2004, 21: 235–240CrossRefGoogle Scholar
  58. 58.
    Zhao L, You G X, Zhou H. High viscosity plasma expander is beneficial for resuscitation of hemorrhagic shock (in Chinese). J Int Pharm Res, 2008, 35: 360–363Google Scholar
  59. 59.
    Kilpatrick D, Fleming J, Clyne C, et al. Reduction of blood viscosity following plasma exchange. Atherosclerosis, 1979, 32: 301–306CrossRefGoogle Scholar
  60. 60.
    Brown M M, Marshall J. Effect of plasma exchange on blood viscosity and cerebral blood flow. Br Med J (Clin Res Ed), 1982, 284: 1733–1736CrossRefGoogle Scholar
  61. 61.
    Cliville X, Bofill C, Joven J, et al. Hemorheological, coagulative and fibrinolytic changes during autologous blood donation. Clin Hemorheol Microcirc, 1998, 18: 265–272Google Scholar
  62. 62.
    DeFilippis A P, Law K, Curtin S, et al. Blood is thicker than water: The management of hyperviscosity in adults with cyanotic heart disease. Cardiol Rev, 2007, 15: 31–34CrossRefGoogle Scholar
  63. 63.
    Strand T, Asplund K, Eriksson S, et al. A randomized controlled trial of hemodilution therapy in acute ischemic stroke. Stroke, 1984, 15: 980–989CrossRefGoogle Scholar
  64. 64.
    Ferrannini M, Vischini G, Staffolani E, et al. Rheopheresis in vascular diseases. Int J Artif Organs, 2007, 30: 923–929Google Scholar
  65. 65.
    Dou M, Ma A G, Wang Q Z, et al. Supplementation with magnesium and vitamin E were more effective than magnesium alone to decrease plasma lipids and blood viscosity in diabetic rats. Nutr Res, 2009, 29: 519–524CrossRefGoogle Scholar
  66. 66.
    Chung T W, Yu J J H, Liu D Z. Reducing lipid peroxidation stress of erythrocyte membrane by alpha-tocopherol nicotinate plays an important role in improving blood rheological properties in type 2 diabetic patients with retinopathy. Diabet Med, 1998, 15: 380–385CrossRefGoogle Scholar
  67. 67.
    Feng X L, Jin Y H, Lin J H. Effects of the purified oil of Anguilla japonica and vitamin E on the concentration of blood fibrinogen and the blood viscosity of rat (in Chinese). Acad J First Med Coll PLA, 1999, 19: 122–123Google Scholar
  68. 68.
    Bin J P, Doctor A, Lindner J, et al. Effects of nitroglycerin on erythrocyte rheology and oxygen unloading-Novel role of S-nitrosohe-moglobin in relieving myocardial ischemia. Circulation, 2006, 113: 2502–2508CrossRefGoogle Scholar
  69. 69.
    Hou W C, Tsay H S, Liang H J, et al. Improving abnormal hemorheological parameters in aging guinea pigs by water-soluble extracts of Salvia miltiorrhiza Bunge. J Ethnopharmacol, 2007, 111: 483–489CrossRefGoogle Scholar
  70. 70.
    Fan H Y, Fu F H, Yang M Y, et al. Antiplatelet and antithrombotic activities of salvianolic acid A. Thromb Res, 2010, 126: 17–22CrossRefGoogle Scholar
  71. 71.
    Tian J W, Fu F H, Jiang W L, et al. Protective effect of Ligulsticum chuanxiong phthalides on focai cerebral ischemia in rats and its related mechanism of action. Zhongguo Zhongyao Zazhi, 2005, 30: 466–468Google Scholar
  72. 72.
    Naito T, Kubota K, Shimoda Y, et al. Effects of constituents in a Chinese crude drug, Ligustici chuanxiong Rhizoma on vasocontraction and blood viscosity. Nat Med, 1995, 49: 288–292Google Scholar
  73. 73.
    Liu J X, Li H Y, Mu Y J, et al. The effect of Qigen Xingnao Prescriptionon on platelet aggregation, thrombosis and hemorrheology (in Chinese). Chin Tradit Pat Med, 2007, 30: 756–758Google Scholar
  74. 74.
    Salazar Vquez B Y, Wettstein R, Cabrales P, et al. Microvascular experimental evidence on the relative significance of restoring oxygen carrying capacity vs. blood viscosity in shock resuscitation. Biochim Biophys Acta, 2008, 1784: 1421–1427Google Scholar
  75. 75.
    Cabrales P, Intaglietta M, Tsai A G. Transfusion restores blood viscosity and reinstates microvascular conditions from hemorrhagic shock independent of oxygen carrying capacity. Resuscitation, 2007, 75: 124–134CrossRefGoogle Scholar
  76. 76.
    Cabrales P, Tsai A G, Intaglietta M. Is resuscitation from hemorrhagic shock limited by blood oxygen-carrying capacity or blood viscosity? Shock, 2007, 27: 380–389CrossRefGoogle Scholar
  77. 77.
    Martini J, Tsai A G, Cabrales P, et al. Increased cardiac output and microvascular blood flow during mild hemoconcentration in hamster window model. Am J Physiol Heart Circ Physiol, 2006, 291: 310–317CrossRefGoogle Scholar
  78. 78.
    Hess J R, MacDonald V W, Brinkley W W. Systemic and pulmonary hypertension after resuscitation with cell-free hemoglobin. J Appl Physiol, 1993, 74: 1769–1778Google Scholar
  79. 79.
    Keipert P E, Gonzales A, Gomez C L, et al. Acute changes in systemic blood pressure and urine output of conscious rats following exchange transfusion with diaspirin-crosslinked hemoglobin solution. Transfusion, 1993, 33: 701–708CrossRefGoogle Scholar
  80. 80.
    Hess J R, MacDonald V W, Winslow R M. Dehydration and shock: An animal model of hemorrhage and resuscitation of battlefield injury. Biomater Artif Cells Immobilization Biotechnol, 1992, 20: 499–502Google Scholar
  81. 81.
    Caron A, Malfatti E, Aguejouf O, et al. Vasoconstrictive response of rat mesenteric arterioles following infusion of cross-linked, polymerized, and conjugated hemoglobin solutions. Artif Cells Blood Substit Immobil Biotechnol, 2001, 29: 19–30CrossRefGoogle Scholar
  82. 82.
    Winslow R M, Gonzales A, Gonzales M I, et al. Vascular resistance and the efficacy of red cell substitutes in a rat hemorrhage model. J Appl Physiol, 1998, 85: 993–1003Google Scholar
  83. 83.
    Rochon G, Caron A, Toussaint-Hacquard M, et al. Hemodilution with stoma-free hemoglobin at physiologically maintained viscosity delays the onset of vasoconstriction. Hypertension, 2004, 43: 1110–1115CrossRefGoogle Scholar
  84. 84.
    Tsai A G, Acero C, Nance P R, et al. Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am J Physiol Heart Circ Physiol, 2005, 288: 1730–1739CrossRefGoogle Scholar
  85. 85.
    Tsai A G, Friesenecker B, McCarthy M, et al. Plasma viscosity regulates capillary perfusion during extreme hemodilution in hamster skinfold model. Am J Physiol Heart Circ Physiol, 1998, 275: 2170–2180Google Scholar
  86. 86.
    Cabrales P, Tsai A G, Intaglietta M. Increased plasma viscosity prolongs microhemodynamic conditions during small volume resuscitation from hemorrhagic shock. Resuscitation, 2008, 77: 379–386CrossRefGoogle Scholar
  87. 87.
    Tok D, Caliskan M, Gullu H, et al. The association between hematological parameters and coronary flow reserve and coronary haemorheology in healthy subjects. Clin Hemorheol Microcirc, 2007, 36: 345–352Google Scholar
  88. 88.
    Starzyk D, Korbut R, Gryglewski R J. Effects of nitric oxide and prostacyclin on deformability and aggregability of red blood cells of rats ex vivo and in vitro. J Physiol Pharmacol, 1999, 50: 629–637Google Scholar
  89. 89.
    Bor-Kucukatay M, Wenby R B, Meiselman H J, et al. Effects of nitric oxide on red blood cell deformability. Am J Physiol Heart Circ Physiol, 2003, 284: 1577–1584Google Scholar
  90. 90.
    Dangel O, Mergia E, Karlisch K, et al. Nitric oxide-sensitive guanylyl cyclase is the only nitric oxide receptor mediating platelet inhibition. J Thromb Haemost, 2010, 8: 1343–1352CrossRefGoogle Scholar
  91. 91.
    Malek A, Izumo S. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am J Physiol-Cell Ph, 1992, 263: 389–396Google Scholar
  92. 92.
    Koller A, Sun D, Kaley G. Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ Res, 1993, 72: 1276–1284Google Scholar
  93. 93.
    Bertuglia S. Increased viscosity is protective for arteriolar endothelium and microvascular perfusion during severe hemodilution in hamster cheek pouch. Microvasc Res, 2001, 61: 56–63CrossRefGoogle Scholar
  94. 94.
    Byfield F J, Reen R K, Shentu T P, et al. Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J Biomech, 2009, 42: 1114–1119CrossRefGoogle Scholar
  95. 95.
    Chowdhury F, Li Y Z, Poh Y C, et al. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS One, 2010, 5: e15655CrossRefGoogle Scholar
  96. 96.
    Tee S Y, Fu J P, Chen C S, et al. Cell shape and substrate rigidity both regulate cell stiffness. Biophys J, 2011, 100: 25–27CrossRefGoogle Scholar
  97. 97.
    Liao F L, Li M, Han D, et al. Biomechanopharmacology: A new borderline discipline. Trends Pharmacol Sci, 2006, 27: 287–289CrossRefGoogle Scholar
  98. 98.
    Chiu J J, Chien S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol Rev, 2011, 91: 327–387CrossRefGoogle Scholar
  99. 99.
    Zhao L, Wang B, You G X, et al. Hemorrheological changes in irreversible hemorrhagic shock (in Chinese). Chin Crit Care Med, 2008, 20: 159–162Google Scholar
  100. 100.
    Zhao L, Wang B, You G X, et al. Effects of different resuscitation fluids on the rheologic behavior of red blood cells, blood viscosity and plasma viscosity in experimental hemorrhagic shock. Resuscitation, 2009, 80: 253–258CrossRefGoogle Scholar
  101. 101.
    Zhao L, You G X, Liao F L, et al. Sodium alginate as viscosity modifier may induce aggregation of red blood cells. Artif Cells Blood Substit Immobil Biotechnol, 2010, 38: 267–276CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Gan Chen
    • 1
  • Lian Zhao
    • 1
  • YaoWen Liu
    • 3
  • FuLong Liao
    • 2
  • Dong Han
    • 2
  • Hong Zhou
    • 1
    Email author
  1. 1.Institute of Transfusion MedicineAcademy of Military Medical SciencesBeijingChina
  2. 2.National Center for Nanoscience and TechnologyBeijingChina
  3. 3.Institute of Pharmacology and ToxicologyAcademy of Military Medical SciencesBeijingChina

Personalised recommendations