Advertisement

Chinese Science Bulletin

, Volume 57, Issue 15, pp 1844–1855 | Cite as

Susceptibility variations of multiple origins of loess from the Ily Basin (NW China)

  • Qu Chen
  • XiuMing LiuEmail author
  • F. Heller
  • Ann M. Hirt
  • Bin Lü
  • XueLian Guo
  • XueGang Mao
  • JiaSheng Chen
  • GuoYong Zhao
  • Hua Feng
  • Hui Guo
Open Access
Article Geology

Abstract

The magnetic susceptibility of loess from the Ily Basin, northwestern China shows maximum values in S0 paleosols but minimum values in other paleosols, the mechanism of which has been well debated. In this work, systematic magnetic measurements were made on a representative section from Neleke county. The results show that the loess horizons (L1, L2 and L3) have multi-domain magnetite grains of aeolian origin, S0 is characterized by production of pedogenetic ultrafine-grained ferrimagnetic minerals, and the other paleosols (S1, S2, and S3) are characterized by the formation of nonferrimagnetic minerals associated with waterlogging. The correlation between the low concentration of ferrimagnets, high paramagnetic content, high magnetic coercivity remanence, fine ferrimagnetic grain size and intensified pedogenesis suggest two competing processes of pedogenetic enhancement and pedogenetic depletion in the lower paleosols. Pedogenetic depletion dominates and is responsible for the low susceptibility. Changes in magnetic grain size distribution occur during pedogenetic depletion. The susceptibility variations are of multiple origins in the loess of the Ily Basin. Pedogenetic enhancement, pedogenetic depletion, and allochthonous input of magnetic minerals should all be taken into account to explain the variations of magnetic parameters.

Keywords

magnetic susceptibility magnetic depletion and enhancement loess Ily Basin environmental magnetism 

References

  1. 1.
    Maher B A. Magnetic properties of modern soils and Quaternary loessic paleosols: Paleoclimatic implications. Palaeogeogr Palaeocl, 1998, 37: 25–54CrossRefGoogle Scholar
  2. 2.
    Sun J M, Liu T S. Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind-blown sediments. Earth Planet Sci Lett, 2000, 180: 287–296CrossRefGoogle Scholar
  3. 3.
    Maher B A, Taylor R M. Formation of ultrafine magnetite in soils. Nature, 1988, 336: 368–370CrossRefGoogle Scholar
  4. 4.
    Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess. Nature, 1990, 346: 737–739CrossRefGoogle Scholar
  5. 5.
    Liu X M, Shaw J, Liu T S, et al. Magnetic mineralogy of Chinese loess and its significance. Geophys J Int, 1992, 108: 301–308CrossRefGoogle Scholar
  6. 6.
    Evans M E, Heller F. Magnetic enhancement and paleoclimate: study of a loess/paleosol couplet across the Loess Plateau of China. Geophys J Int, 1994, 117: 257–264CrossRefGoogle Scholar
  7. 7.
    Evans M E, Heller F. Magnetism of loess palaeosol sequence: recent developments. Earth-Sci Rev, 2001, 54: 129–144CrossRefGoogle Scholar
  8. 8.
    Liu Q S, Jackson M J, Banerjee S K, et al. Mechanism of magnetic susceptibility enhancements of the Chinese loess. J Geophys Res, 2004, 109: B12107CrossRefGoogle Scholar
  9. 9.
    Begét J E, Hawkins D B. Influence of orbital parameters on Pleistocene loess deposition in central Alaska. Nature, 1989, 337: 151–153CrossRefGoogle Scholar
  10. 10.
    Begét J, Stone D, Hawkins D. Paleoclimate forcing of magnetic susceptibility variations in Alaskan loess. Geology, 1990, 18: 40–43CrossRefGoogle Scholar
  11. 11.
    Begét J. Tephrochronology and paleoclimatology of the last interglacial cycle recorded in Alaska loess deposits. Quat Int, 1996, 34–36: 121–126CrossRefGoogle Scholar
  12. 12.
    Chlachula J, Evans M E, Rutter N W. A magnetic investigation of a late Quaternary loess/paleosol record in Siberia. Geophys J Int, 1998, 132: 128–132CrossRefGoogle Scholar
  13. 13.
    Kravchinsky V A, Zykina V S, Zykin V S. Magnetic indicator of global paleoclimate cycles in Siberian loess-paleosol sequences. Earth Planet Sci Lett, 2008, 265: 498–514CrossRefGoogle Scholar
  14. 14.
    Zhu R X, Alexey K, Galina M, et al. Rock-magnetic investigation of Siberia loess and its implication. Chin Sci Bull, 2000, 45: 2192–2198CrossRefGoogle Scholar
  15. 15.
    Matasova G, Petrovský E, Jordanova N, et al. Magnetic study of Late Pleistocene loess/palaeosol sections from Siberia: Palaeoenvironmental implications. Geophys J Int, 2001, 147: 367–380CrossRefGoogle Scholar
  16. 16.
    Zhu R X, Matasova G, Kazansky A, et al. Rock magnetic record of the last glacial-interglacial cycle from the Kurtak loess section, southern Siberia. Geophys J Int, 2003, 152: 335–343CrossRefGoogle Scholar
  17. 17.
    Liu X M, Hesse P, Rolph T, et al. Properties of magnetic mineralogy of Alaskan loess: Evidence for pedogenesis. Quat Int, 1999, 62: 93–102CrossRefGoogle Scholar
  18. 18.
    Liu X M, Hesse P, Rolph T. Pedogenic destruction of ferrimagnetics in Alaskan loess deposits. Australian J Soil Res, 2001, 39: 99–115CrossRefGoogle Scholar
  19. 19.
    Liu X M, Xia D S, Liu D S, et al. Discussion on two models of paleoclimatic records of magnetic susceptibility of Alaskan and Chinese loess (in Chinese). Quaternary, 2007, 27: 210–220Google Scholar
  20. 20.
    Liu X M, Liu T S, Paul H, et al. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess. Sci China Ser D-Earth Sci, 2008, 51: 284–293CrossRefGoogle Scholar
  21. 21.
    Ye W. Study on magnetic susceptibility of loess and paleosol sequences in westerly region of Xinjiang (in Chinese). J Desert Res, 2001, 21: 380–386Google Scholar
  22. 22.
    Shi Z T, Dong M, Fang X M. The characteristic of later pleistocene loess-paleosol magnetic susceptibility in Yili Basin (in Chinese). J Lanzhou Univ (Nat Sci), 2007, 43: 7–10Google Scholar
  23. 23.
    Song Y G, Shi Z T, Dong H M, et al. Loess magnetic susceptibility in Central Asia and its paleoclimatic significance. IGARSS, 2008, 2: 1227–1230Google Scholar
  24. 24.
    Song Y G, Shi Z T, Fang X M, et al. Loess magnetic properties in the Ili Basin and their correlation with the Chinese Loess Plateau. Sci China: Earth Sci, 2010, 53: 419–431CrossRefGoogle Scholar
  25. 25.
    Xia D S, Chen F H, Ma J Y, et al. Magnetic characteristics of loess in the Ily area and their environmental implication (in Chinese). Quaternary, 2010, 30: 902–909Google Scholar
  26. 26.
    Jia J, Xia D S, Wei H T, et al. A magnetic investigation of a loess/paleosol sequences record in Ili area. Front Earth Sci, 2010, 4: 259–268CrossRefGoogle Scholar
  27. 27.
    Li C S, Song Y G. Differences in magnetic susceptibility enhancement in Ili Loess, Xinjiang (in Chinese). Acta Geosci Sin, 2011, 32: 80–86Google Scholar
  28. 28.
    Ye B H, Lai Z M, Shi Y F. Some characteristics of precipitation and air temperature in the Yili River Basin (in Chinese). Arid Land Geogr, 1997, 20: 47–52Google Scholar
  29. 29.
    Zhang J M. Study on temporal and spatial distribution of climate resource in Yili River Basin (in Chinese). Arid Meteorol, 2006, 24: 1–4Google Scholar
  30. 30.
    Ye W. Characteristic of physical environment and conditions of loess formation in Yili area, Xinjiang (in Chinese). Arid Land Geogr, 1999, 22: 9–16Google Scholar
  31. 31.
    Fan L H. Study on comparison of the climatic variations and its effects in Tianshan Mountainous area, Southern and Northern Xinjiang (in Chinese). Master’s Dissertation. Urumqi: Xinjiang University, 2006Google Scholar
  32. 32.
    Lv H H, Li Y L, Nan F, et al. Character and age of loess along north piedmont of Tianshan Mountains (in Chinese). Sci Geogr Sin, 2008, 28: 375–379Google Scholar
  33. 33.
    Leonhardt R. Analyzing rock magnetic measurements: The Rock-MagAnalyzer 1.0 software. Comput Geosci-UK, 2006, 32: 1420–1431CrossRefGoogle Scholar
  34. 34.
    Fabian K. Some additional parameters to estimate domain state from isothermal magnetization measurements. Earth Planet Sci Lett, 2003, 213: 337–345CrossRefGoogle Scholar
  35. 35.
    Lu H Y, An Z S. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau. Sci China Ser D-Earth Sci, 1998, 41: 626–631CrossRefGoogle Scholar
  36. 36.
    Hao Q Z, Oldfield F, Bloemendal J, et al. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the past 22 Ma. Geology, 2008, 36: 727–730CrossRefGoogle Scholar
  37. 37.
    Maher B A. Magnetic properties of some synthetic sub-micron magnetites. Geophys J, 1988, 94: 83–96CrossRefGoogle Scholar
  38. 38.
    Dunlop D J, Argyle K S. Thermoremanence, anhysteretic remanence and susceptibility of submicron magnetites: Nonlinear field dependence and variation with grain size. J Geophys Res, 1997, 102: 20199–20210CrossRefGoogle Scholar
  39. 39.
    Florindo F, Zhu R X, Guo B, et al. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese Loess Plateau. J Geophys Res, 1999, 104: 645–659CrossRefGoogle Scholar
  40. 40.
    Thompson R, Oldfield F. Environmental Magnetism. London: Allen and Unwin, 1986: 1–227CrossRefGoogle Scholar
  41. 41.
    Evans M E, Heller F. Environemental Magnetism: Principles and Applications of Environmagnetics. London: Academic Press, 2003. 1–299Google Scholar
  42. 42.
    Forster T, Heller F. Magnetic enhancement paths in loess sediments from Tajikistan, China and Hungary. J Geophys Res Lett, 1997, 24: 17–20CrossRefGoogle Scholar
  43. 43.
    Pan Y X, Zhu R X, Shaw J, et al. Can relative palaeointensities be determined from the normalized magnetisation of the wind-blown loess of China? J Geophys Res, 2001, 106: 19221–19232CrossRefGoogle Scholar
  44. 44.
    Cui Y L, Verosub K L. The effect of low-temperature oxidation on large mutli-domain magnetite. Geophys Res Lett, 1994, 21: 757–760CrossRefGoogle Scholar
  45. 45.
    Velzen A J V, Dekkers M J. Low-temperature oxidation of magnetite in loess paleosol sequences: A correction of rock magnetic parameters. Stud Geophys Geod, 1999, 43: 357–375CrossRefGoogle Scholar
  46. 46.
    Liu Q S, Banerjee S K, Jackson M J, et al. Effects of low-temperature oxidation on the natural remanent magnetization of the Chinese loess. Chin Sci Bull, 2002, 47: 2100–2105CrossRefGoogle Scholar
  47. 47.
    Liu Q S, Banerjee S K, Jackson M J, et al. New insights into partial oxidation model of magnetites and thermal alteration of magnetic mineralogy of the Chinese loess in air. Geophys J Int, 2004, 158: 506–514CrossRefGoogle Scholar
  48. 48.
    Deng C L, Vidic N J, Verosub K L, et al. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability. J Geophys Res, 2005, 110, B03103CrossRefGoogle Scholar
  49. 49.
    Bloemendal J, King J W, Hall F R, et al. Rock magnetism of late Neogene and Pleistocene deep-sea sediments: Relationship of sediment source, diagenetic processes and sediment lithology. J Geophys Res, 1992, 97: 4361–4375CrossRefGoogle Scholar
  50. 50.
    Hunt C P, Singer M J, Kletetschka G, et al. Effect of citrate-bicar-bonate-dithionite treatment on fine-grained magnetite and maghemite. Earth Planet Sci Lett, 1995, 130: 87–94CrossRefGoogle Scholar
  51. 51.
    Liu X M, Rolph T, Bloemendal J. The Citrate-Bicarbonate-Dithionite (CBD) removable magnetic component of Chinese loess. Quat Proc, 1995, 4: 53–58Google Scholar
  52. 52.
    Pinchas F, Kenneth L V, Michael J S. Pedogenic and lithogenic contribution to the magnetic susceptibility record of the Chinese loess/palaeosol sequence. Geophys J Int, 1995, 122: 97–107CrossRefGoogle Scholar
  53. 53.
    Liu Q S, Banerjee S K, Jackson M J, et al. An integrated study of the grain-size-dependent magnetic mineralogy of the Chinese loess/paleosol and its environmental significance. J Geophys Res, 2003, 108: 2437CrossRefGoogle Scholar
  54. 54.
    Liu Q S, Banerjee S K, Michael J, et al. Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences. J Geophys Res, 2004, 109: B03101CrossRefGoogle Scholar
  55. 55.
    Liu Q S, Jackson M J, Yu Y J, et al. Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols. Geophys Res Lett, 2004, 31: L22603CrossRefGoogle Scholar
  56. 56.
    Liu Q S, Jose T, Barbara A M, et al. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance. J Geophys Res, 2005, 110: B11102CrossRefGoogle Scholar
  57. 57.
    Liu Q S, Deng C L, Torrent J, et al. Review of recent developments in mineral magnetism of the Chinese loess. Quat Sci Rev, 2007, 26: 368–385CrossRefGoogle Scholar
  58. 58.
    Nie J S, Song Y G, John W, et al. Consistent grain size distribution of pedogenic maghemite of surface soils and Miocene loessic soils on the Chinese Loess Plateau. J Quat Sci, 2009, 25: 261–266CrossRefGoogle Scholar
  59. 59.
    Spassov S, Heller F, Kretzschmar R, et al. Detrital and pedogenic magnetic mineral phases in the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau). Phys Earth Planet In, 2003, 140: 255–275CrossRefGoogle Scholar
  60. 60.
    Sun J M. Source regions and formation of the Loess sediments on the high mountain regions of northwestern China. Quat Res, 2002, 58: 341–351CrossRefGoogle Scholar
  61. 61.
    Guo X L, Liu X M, Lv B, et al. Comparison of topsoil magnetic properties between the loess region in Tianshan Mountains and Loess Plateau, China, and its environmental significance (in Chinese). J Geophys, 2011, 54: 1854–1862Google Scholar
  62. 62.
    Zan J B, Fang X M, Yang S L, et al. A rock magnetic study of loess from the West Kunlun Mountains. J Geophys Res, 2010, 115: B10101CrossRefGoogle Scholar
  63. 63.
    Jia J, Xia D S, Wei H T, et al. Magnetic properties of typical paleosol and loess stratum of western loess plateau and its signification to paleoclimate (in Chinese). J Lanzhou Univ (Nat Sci), 2010, 46: 26–40Google Scholar
  64. 64.
    Zan J B, Fang X M, Nie J S, et al. Magnetic properties of surface soils across the southern Tarim Basin and their relationship with climate and source materials. Chin Sci Bull, 2011, 56: 290–296CrossRefGoogle Scholar
  65. 65.
    Verosub K, Fine P, Singer M, et al. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology, 1993, 21: 1011–1014CrossRefGoogle Scholar
  66. 66.
    Fassbinder J W E, Stanjek H, Vali H. Occurrence of magnetic bacteria in soil. Nature, 1993, 343: 161–163CrossRefGoogle Scholar
  67. 67.
    Maher B A, Thompson R, Zhou L P. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach. Earth Planet Sci Lett, 1994, 125: 461–471CrossRefGoogle Scholar
  68. 68.
    Maher B A, Alekseev A, Alekseeva T. Magnetic mineralogy of soils across the Russian Steppe: Climatic dependence of pedogenic magnetite formation. Palaeogeogr Palaeoclimatol Palaeoecol, 2003, 201: 321–334CrossRefGoogle Scholar
  69. 69.
    Torrent J, Barrón V, Liu Q S. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil. Geophys Res Lett, 2006, 33: L02401CrossRefGoogle Scholar
  70. 70.
    Torrent J, Liu Q S, Bloemendal J, et al. Magnetic enhancement and iron oxides in the upper Luochuan loess-paleosol sequence, Chinese Loess Plateau. Soil Sci Soc Am J, 2007, 71: 1570–1578CrossRefGoogle Scholar
  71. 71.
    Torrent J, Liu Q S, Barrón V. Magnetic minerals in Calcic Luvisols (Chromic) developed in a warm Mediterranean region of Spain: Origin and paleoenvironmental significance. Geoderma, 2010, 154: 465–472CrossRefGoogle Scholar
  72. 72.
    Liu Q S, Barrón V, Torrent J, et al. The magnetism of intermediate hydromaghemite in the transformation of 2-line ferrihydrite into hematite and its paleoenvironmental implications. J Geophys Res, 2008, 113: B01103CrossRefGoogle Scholar
  73. 73.
    Bidegain J C, Rico Y, Bartel A, et al. Magnetic parameters reflecting pedogenesis in Pleistocene loess deposits of Argentina. Quat Int, 2009, 209: 175–186CrossRefGoogle Scholar
  74. 74.
    Matasova G, Kazansky A. Contribution of paramagnetic minerals to magnetic properties of loess-soil deposits in Siberia and its paleoclimatic implications. Izv Phys Solid Earth, 2005, 41: 81–89Google Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Qu Chen
    • 1
    • 2
  • XiuMing Liu
    • 3
    • 4
    Email author
  • F. Heller
    • 2
  • Ann M. Hirt
    • 2
  • Bin Lü
    • 1
  • XueLian Guo
    • 1
  • XueGang Mao
    • 1
  • JiaSheng Chen
    • 1
  • GuoYong Zhao
    • 1
  • Hua Feng
    • 1
  • Hui Guo
    • 1
  1. 1.Key Laboratory of Western China’s Environmental SystemsLanzhou UniversityLanzhouChina
  2. 2.Institute of GeophysicsETHZZurichSwitzerland
  3. 3.School of Geographical SciencesFujian Normal UniversityFuzhouChina
  4. 4.Department of Environment and GeographyMacquarie UniversitySydneyAustralia

Personalised recommendations