Chinese Science Bulletin

, Volume 57, Issue 18, pp 2285–2288 | Cite as

When horsetails became giants

  • Zhuo FengEmail author
  • Thorid Zierold
  • Ronny RößlerEmail author
Open Access
Article Geology


Horsetails arose in the Late Devonian, evolved a greater diversity and forming fast growing bamboo-like thickets in the Carboniferous lowland swamp forest ecosystems. However, the diversity of this group drastically declined during the Permian while the climate became more dynamic and arid. Today only a single surviving genus exists, the herbaceous Equisetum. Here we report an exceptional large horsetail tree from the Early Permian Petrified Forest of Chemnitz. This fossil horsetail tree is assigned to Arthropitys bistriata (Cotta) Goeppert. It is 15 m high and over 25 cm in diameter, with thick wood and at least 3 orders of woody branching system formed a big canopy, and is morphologically very comparable with the living woody higher plants. This suggests that the plasticity mechanism of Permian calamitaleans enabled novel growth strategies when they competed with the rising gymnosperms during the environmental changes.


horsetail Arthropitys bistriata Early Permian Chemnitz Petrified Forest Germany 


  1. 1.
    Taylor T N, Taylor E L, Krings M. Paleobotany: The Biology and Evolution of Fossil Plants. 2nd ed. Amsterdam: Elsevier Science and Technolology, 2009Google Scholar
  2. 2.
    DiMichele W A, Phillips T L. Paleobotanical and paleoecological constraints on models of peat formation in the Late Carboniferous of Euramerica. Palaeogeogr Palaeoclimatol Palaeoecol, 1994, 106: 39–90CrossRefGoogle Scholar
  3. 3.
    Eggert D A. The ontogeny of Carboniferous arborescent Sphenopsida. Palaeontogr B, 1962, 110: 99–127Google Scholar
  4. 4.
    Jongmans W J. Anleitung zur Bestimmung der Karbonpflanzen West-Europas. I. Thallophytae, Equisetalses, Sphenophyllales, Staatl. Bohrverwaltung in den Niederlanden, Craz & Gerlach, 1911Google Scholar
  5. 5.
    Hauke R L. A taxonomical monograph of the genus Equisetum subgenus Hippochaete. Nova Hedwigia Beih, 1963, 8: 1–123Google Scholar
  6. 6.
    Hauke R L. A taxonomic monograph of Equisetum subgenus Equisetum. Nova Hedwigia, 1978, 30: 385–455Google Scholar
  7. 7.
    Rößler R, Noll R. Anatomy and branching of Arthropitys bistriata (Cotta) Goeppert: New observations from the Permian petrified forest of Chemnitz, Germany. Int J Coal Geol, 2010, 83: 103–124CrossRefGoogle Scholar
  8. 8.
    Wang S J, Hilton J, Galtier J, et al. A large anatomically preserved calamitean stem from the Upper Permian of southwest China and its implications for calamitean development and functional anatomy. Plant Sys Evol, 2006, 261: 229–244CrossRefGoogle Scholar
  9. 9.
    Roscher M, Schneider J W. Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context. In: Lucas S G, Schneider J W, eds. Non-marine Permian Biostratigraphy and Biochronology. London: Geological Society London, Special Publication, 2006. 95–136Google Scholar
  10. 10.
    Simpson M G. Plant Systematics. Amsterdam: Elsevier Academic Press, 2006Google Scholar
  11. 11.
    Wang Y, Li J. Genes controlling plant architecture. Ann Rev Plant Biol, 2008, 59: 253–279CrossRefGoogle Scholar
  12. 12.
    Wilson B F. Apical control of branch growth and angle in woody plants. Am J Bot, 2000, 5: 601–607CrossRefGoogle Scholar
  13. 13.
    Wang Y, Li J. Genes controlling plant architecture. Curr Opin Biotechnol, 2006, 17: 123–129CrossRefGoogle Scholar
  14. 14.
    Yang Z, Midmore D J. Self-organisation at the whole-plant level: A modelling study. Funct Plant Biol, 2009, 36: 56–65CrossRefGoogle Scholar
  15. 15.
    White J. The plant as a metapopulation. Ann Rev Ecol Syst, 1979, 10: 109–145CrossRefGoogle Scholar
  16. 16.
    Kawamura K. A conceptual framework for the study of modular responses to local environmental heterogeneity within the plant crown and a review of related concepts. Ecol Res, 2010, 25: 733–744CrossRefGoogle Scholar
  17. 17.
    DiMichele W A, Falcon-Lang H J, Elrick S D, et al. Ecological gradients within a Pennsylvanian forest. Geology, 2007, 35: 415–418CrossRefGoogle Scholar
  18. 18.
    Kerp H. Post-Variscian late Palaeozoic Northern Hemisphere gymnosperms: The onset to the Mesozoic. Rev Palaeobot Palynol, 1996, 90: 263–285CrossRefGoogle Scholar
  19. 19.
    Montañez I P, Tabor N J, Niemeier D, et al. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science, 2007, 315: 87–91CrossRefGoogle Scholar
  20. 20.
    Falcon-Lang H J. Pennsylvanian tropical rainforests responded to glacial-interglacial rhythms. Geology, 2004, 32: 689–692CrossRefGoogle Scholar
  21. 21.
    Falcon-Lang H J, Nelson J, Elrick S, et al. Incised valley-fills containing conifers imply that seasonally-dry vegetation dominated Pennsylvanian lowlands. Geology, 2009, 37: 923–926CrossRefGoogle Scholar
  22. 22.
    Falcon-Lang H J, DiMichele W A. What happened to the Coal Forests during glacial phases? Palaios, 2010, 25: 611–617CrossRefGoogle Scholar
  23. 23.
    Sahney S, Benton M J, Falcon-Lang H J. Rainforest collapse triggered Carboniferous tetrapod diversification in Euramerica. Geology, 2010, 38: 1079–1082CrossRefGoogle Scholar
  24. 24.
    Rößler R. Two remarkable Permian petrified forests: Correlation, comparison and significance. In: Lucas S G, Schneider J W, eds. Non-marine Permian Biostratigraphy and Biochronology. London: Geological Society London, Special Publication, 2006. 39–63Google Scholar
  25. 25.
    Rößler R, Noll R. Sphenopsids of the Permian (I): The largest known anatomically preserved calamite, an exceptional find from the petrified forest of Chemnitz Germany. Rev Palaeobot Palynol, 2006, 140: 145–162CrossRefGoogle Scholar
  26. 26.
    Grams T E E, Andersen C P. Competition for resources in trees: Physiological versus morphological plasticity. Prog Bot, 2007, 68: 356–381CrossRefGoogle Scholar
  27. 27.
    Tremmel D C, Bazzaz F A. Plant architecture and allocation in different neighborhoods: Implications for competitive success. Ecology, 1995, 76: 262–271CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Museum für NaturkundeChemnitzGermany
  2. 2.Yunnan Key Laboratory for PalaeobiologyYunnan UniversityKunmingChina

Personalised recommendations