Advertisement

Chinese Science Bulletin

, Volume 57, Issue 2–3, pp 247–252 | Cite as

A renormalization group approach to crowd psychology and inter-group coupling in social many-body systems

  • Chul Koo Kim
  • Kong-Ju-Bock Lee
  • Myung-Hoon Chung
Open Access
Article Statistical Physics

Abstract

By adopting majority rule within a renormalization group approach, we can show that the strength of inter-group interaction in a social system either grows or shrinks monotonically with increasing group size, depending on the initial coupling strength of individuals in the group. This contrasts with the findings of previous studies in which the strength of the interaction grows with group size regardless of the initial strength. Our approach clearly demonstrates that the phenomena of crowd psychology, such as an extreme anti-reaction between different ethnic or ideological groups, could be a consequence of the many-particle nature of social systems when the initial strength of the interaction is larger than a critical value. The effect of neutral opinion holders is critically examined using the spin-one Ising model. The critical size of the population of neutral opinion holders, that can prevent crowd polarization, depends on the block spin rule.

Keywords

renormalization crowd psychology block spin 

References

  1. 1.
    Auyang S. Foundation of Complex-System Theories. Cambridge: Cambridge University Press, 1998Google Scholar
  2. 2.
    Haken H. Advanced Synergetics. 2nd ed. Berlin: Springer, 1987Google Scholar
  3. 3.
    Callen E, Shapiro D. A theory of social imitation. Phys Today, 1974, July: 23–28Google Scholar
  4. 4.
    Helbing D, Keltsch J, Molnár P. Modelling the evolution of human trail systems. Nature, 1997, 388: 47–50CrossRefGoogle Scholar
  5. 5.
    Weidlich W. Sociodynamics: A Systematic Approach to Mathematical Modeling in the Social Sciences. New Jersey: Harwood Academic, 2000Google Scholar
  6. 6.
    Albert R, Barabasi A. Statistical mechanics of complex networks. Rev Mod Phys, 2002, 74: 47–97CrossRefGoogle Scholar
  7. 7.
    Aleksiejuk A, Holyst J, Stauffer D. Ferromagnetic phase transition in Barabasi-Albert networks. Physica A, 2002, 310: 260–266CrossRefGoogle Scholar
  8. 8.
    Schelling T. Dynamic models of segregation. J Math Soc, 1971, 1: 143–186CrossRefGoogle Scholar
  9. 9.
    Meyer-Ortmanns H. Immigration, integration and ghetto formation. Int J Mod Phys C, 2003, 14: 311–319CrossRefGoogle Scholar
  10. 10.
    Bordogna C, Albano E. Theoretical description of teaching-learning processes: A multidisciplinary approach. Phys Rev Lett, 2001, 87: 118701CrossRefGoogle Scholar
  11. 11.
    Mobilia M. Does a single zealot affect an infinite group of voters? Phys Rev Lett, 2003, 91: 028701CrossRefGoogle Scholar
  12. 12.
    Slomczynski W, Zyczkowsk K. Penrose voting system and optimal quota. Acta Physica Polonica B, 2006, 37: 3133–3143Google Scholar
  13. 13.
    Levy S. Abstracts: Peace Science Society (International). In: Thirty-Fourth North American Meetings, New Haven, Connecticut, October 27–29, 2000. Peace Economics, Peace Science and Public Policy, 2001, 7: Article 3Google Scholar
  14. 14.
    Hewstone M, Rubin R, Willis H. Intergroup-bias. Annu Rev Psychol, 2002, 53: 575–604CrossRefGoogle Scholar
  15. 15.
    Bar-Tal D, Labin D. The effect of a major event on stereotyping: terrorist attacks in Israel and Israeli adolescents’ perceptions of Palestinians, Jordanians and Arabs. Euro J Soc Psycho, 2001, 31: 265–280CrossRefGoogle Scholar
  16. 16.
    Spruiell V. Crowd psychology and ideology: A psychoanalytic view of the reciprocal effects of folk philosophies and personal actions. Int J Psycho-Anal, 1988, 69: 171–178Google Scholar
  17. 17.
    Deffuant G, Amblard F, Weisbuch G, et al. How can extremism prevail? A study based on the relative agreement interaction model. J Artificial Societies and Social Simulation, 2002, 5: http://jasss.soc.surrey.ac.uk/5/4/1.html
  18. 18.
    Hegselmann R, Krause U. Opinion dynamics and bounded confidence: Models, analysis and simulation. J Artificial Societies and Social Simulation, 2002, 5: http://jasss.soc.surrey.ac.uk/5/3/2.html
  19. 19.
    Nye R. The Origins of Crowd Psychology: Gustave Le Bon and the Crisis of Mass Democracy in the Third Republic. London: Sage, 1975Google Scholar
  20. 20.
    Schweitzer F. Brownian Agents and Active Particles. New York: Springer, 2003. 359–371Google Scholar
  21. 21.
    Goldenfeld N. Lectures on Phase Transitions and the Renormalization Group. New York: Addison-Wesley, 1992. 257–268Google Scholar
  22. 22.
    Plischke M, Bergersen B. Equilibrium Statistical Physics. 2nd ed. Singapore: World Scientific, 1994. 228–236Google Scholar
  23. 23.
    Galam S. Social paradoxes of majority rule voting and renormalization group. J Stat Phys, 1990, 61: 943–951CrossRefGoogle Scholar
  24. 24.
    Kacperski K, Holyst J. Phase transitions and hysteresis in a cellular automata-based model of opinion formation. J Stat Phys, 1996, 84: 169–189CrossRefGoogle Scholar
  25. 25.
    Insko C, Schopler J, Hoyle R, et al. Individual-group discontinuity as a function of fear and greed. J Personality Social Psychol, 1990, 58: 68–79CrossRefGoogle Scholar
  26. 26.
    Schopler J, Insko C. In: Stroebe W, Hewstone M, eds. European Review of Social Psychol. Chichester: Wiley, 1992. 121–152Google Scholar
  27. 27.
    Coleman J. Introduction to Mathematical Sociology. London: Collier-Macmillan, 1964. 283–287Google Scholar
  28. 28.
    Wassermann S, Faust K. Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press, 1994Google Scholar
  29. 29.
    Stauffer D. The Monte Carlo method in the physical sciences: Celebrating the 50th anniversary of the metropolis algorithm. AIP Conf Proc, 2003, 690: 147–155CrossRefGoogle Scholar
  30. 30.
    Sznajd-Weron K, Sznajd J. Opinion evolution in closed community. Int J Mod Phys C, 2000, 11: 1157–1165CrossRefGoogle Scholar
  31. 31.
    Buyukkilic F, Demirhan D, Tirnakli U. Generalization of the mean-field Ising model within tsallis thermostatistics. Physica A, 1997, 238: 285–294CrossRefGoogle Scholar
  32. 32.
    Fu F, Chen X, Liu L, et al. Social dilemmas in an online social network: The structure and evolution of cooperation. Phys Lett A, 2007, 371: 58–64CrossRefGoogle Scholar
  33. 33.
    Andrade R R S, Miranda J G V, Pinho S T R, et al. Measuring distances between complex networks. Phys Lett A, 2008, 372: 5265–5269CrossRefGoogle Scholar
  34. 34.
    Hu H, Wang X. Evolution of a large online social network. Phys Lett A, 2009, 373: 1105–1110CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Chul Koo Kim
    • 1
  • Kong-Ju-Bock Lee
    • 2
  • Myung-Hoon Chung
    • 3
  1. 1.Institute of Physics and Applied PhysicsYonsei UniversitySeoulKorea
  2. 2.Department of PhysicsEwha Woman’s UniversitySeoulKorea
  3. 3.Department of PhysicsHongik UniversityJochiwon, ChoongnamKorea

Personalised recommendations