Advertisement

Chinese Science Bulletin

, Volume 57, Issue 1, pp 2–19 | Cite as

Geomicrobial functional groups: A window on the interaction between life and environments

  • ShuCheng Xie
  • Huan Yang
  • GenMing Luo
  • XianYu Huang
  • Deng Liu
  • YongBiao Wang
  • YiMing Gong
  • Ran Xu
Open Access
Review Progress of Projects Supported by NSFC Geology

Abstract

Microbes are well-known for their great diversity and abundance in modern natural environments. They also are believed to provide critical links among higher organisms and their associated environments. However, the low diversity of morphological features and structures of ancient microbes preserved in sediments and rocks make them difficult to identify and classify. This difficulty greatly hinders the investigation of geomicrobes throughout Earth history. Thus, most previous paleontological studies have focused on faunal and floral fossils. Here, geomicrobial functional groups (GFGs), or a collection of microbes featured in specific ecological, physiological or biogeochemical functions, are suggested to provide a way to overcome the difficulties of ancient microbe investigations. GFGs are known for their great diversity in ecological, physiological and biogeochemical functions. In addition, GFGs may be preserved as the biogeochemical, mineralogical and sedimentological records in sediments and rocks. We reviewed the functions, origins and identification diagnostics of some important GFGs involved in the elemental cycles of carbon, sulfur, nitrogen and iron. GFGs were further discussed with respect to their significant impacts on paleoclimate, sulfur chemistry of ancient seawater, nutritional status of geological environments, and the deposition of Precambrian banded iron formations.

Keywords

geomicrobial functional group carbon-sulfur-nitrogen cycle iron reduction and oxidation photosynthesis molecular fossils geobiology critical periods 

References

  1. 1.
    Morgan J P, Reston T J, Ranero C R. Contemporaneous mass extinctions, continental flood basalts, and ‘impact signals’: Are mantle plume-induced lithospheric gas explosions the causal link? Earth Planet Sci Lett, 2004, 217: 263–284CrossRefGoogle Scholar
  2. 2.
    Love J E. Gaia: A New Look at Life on Earth. Oxford: Oxford University Press, 2000. 1–148Google Scholar
  3. 3.
    Xie S, Gong Y, Tong J, et al. Development from paleontology to geobiology (in Chinese). Chin Sci Bull (Chin Ver), 2006, 51: 2327–2336CrossRefGoogle Scholar
  4. 4.
    Yin H, Xie S, Tong J, et al. On the significance of geobiology (in Chinese). Acta Palaeont Sin, 2009, 48: 293–301Google Scholar
  5. 5.
    Xie S, Yin H, Shi X. Geobiology: Interactions and Co-evolution Between Life and Earth Environments (in Chinese). Beijing: Science Press, 2011. 63Google Scholar
  6. 6.
    Kalyuzhnaya M G, Lapidus A, Ivanova N, et al. High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol, 2008, 26: 1029–1034CrossRefGoogle Scholar
  7. 7.
    Strom S L. Microbial ecology of ocean biogeochemistry: A community perspective. Science, 2008, 320: 1043–1045CrossRefGoogle Scholar
  8. 8.
    Falkowski P G, Fenchel T, Delong E F. The microbial engines that drive Earth’s biogeochemical cycles. Science, 2008, 320: 1034–1039CrossRefGoogle Scholar
  9. 9.
    Des Marais D J. When did photosynthesis emerge on earth? Science, 2000, 289: 1703–1705Google Scholar
  10. 10.
    Gray M W. The endosymbiont hypothesis revisited. Inter Rev Cytol, 1992, 141: 233–357CrossRefGoogle Scholar
  11. 11.
    Buick R. The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient Archaean lakes. Science, 1992, 255: 74–77CrossRefGoogle Scholar
  12. 12.
    Buick R. When did oxygenic photosynthesis evolve? Philos Trans R Soc Lond B, 2008, 363: 2731–2734CrossRefGoogle Scholar
  13. 13.
    Olson J M, Blankenship R. Thinking about the evolution of photosynthesis. Photosynth Res, 2004, 80: 373–386CrossRefGoogle Scholar
  14. 14.
    Olson J M. Photosynthesis in the Archean Era. Photosynth Res, 2006, 88: 109–117CrossRefGoogle Scholar
  15. 15.
    Xiong J, Fischer W M, Inoue K, et al. Molecular evidence for the early evolution of photosynthesis. Science, 2000, 289: 1724–1730CrossRefGoogle Scholar
  16. 16.
    Widdel F, Schnell S, Heising S, et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 1993, 362: 834–836CrossRefGoogle Scholar
  17. 17.
    Ehrenreich A, Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol, 1994, 60: 4517–4526Google Scholar
  18. 18.
    Heising S, Richter L, Ludwig W, et al. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain. Arch Microbiol, 1999, 172: 116–124CrossRefGoogle Scholar
  19. 19.
    Konhauser K O, Hamade T, Raiswell R, et al. Could bacteria have formed the Precambrian banded iron formations? Geology, 2002, 30: 1079–1082CrossRefGoogle Scholar
  20. 20.
    Bekker A, Holland H D, Wang P L, et al. Dating the rise of atmospheric oxygen. Nature, 2004, 427: 117–120CrossRefGoogle Scholar
  21. 21.
    Anbar A D, Duan Y, Lyons T W, et al. A whiff of oxygen before the Great Oxidation Event? Science, 2007, 317: 1903–1906CrossRefGoogle Scholar
  22. 22.
    Garvin J, Buick R, Anbar A D, et al. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science, 2009, 323: 1045–1048CrossRefGoogle Scholar
  23. 23.
    Kaufman A J, Johnston D T, Farquhar J, et al. Late Archean biospheric oxygenation and atmospheric evolution. Science, 2007, 317: 1900–1903CrossRefGoogle Scholar
  24. 24.
    Catling D C, Claire M W. How Earth’s atmosphere evolved to an oxic state: A status report. Earth Planet Sci Lett, 2005, 237: 1–20CrossRefGoogle Scholar
  25. 25.
    Kopp R E, Kirschvink J L, Hiburn I A, et al. The Paleoproterozoic snowball earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA, 2005, 102: 11131–11136CrossRefGoogle Scholar
  26. 26.
    Ohmoto H. When did the Earth’s atmosphere become oxic? Geochem News, 1997, 93: 26–27Google Scholar
  27. 27.
    Knoll A H, Summons R E, Waldbauer J R, et al. The geological succession of primary producers in the oceans. In: Falkowski P G, Knoll A H, eds. Evolution of Primary Producers in the Sea. Burlington: Elsevier Academic Press, 2007. 133–163Google Scholar
  28. 28.
    Jiao N Z, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat Rev Microbiol, 2010, 8: 593–599CrossRefGoogle Scholar
  29. 29.
    Mittere R M. Methanogenesis and sulfate reduction in marine sediments: A new model. Earth Planet Sci Lett, 2010, 295: 358–366CrossRefGoogle Scholar
  30. 30.
    Yoshioka H, Maruyama A, Nakamura T, et al. Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin. Geobiology, 2010, 8: 223–233CrossRefGoogle Scholar
  31. 31.
    Eriksson T, Öquist M G, Nilsson M B. Production and oxidation of methane in a boreal mire after a decade of increased temperature and nitrogen and sulfur deposition. Glob Change Biol, 2010, 16: 2130–2144CrossRefGoogle Scholar
  32. 32.
    Shoemaker J K, Schrag D P. Subsurface characterization of methane production and oxidation from a New Hampshire wetland. Geobiology, 2010, 8: 234–243CrossRefGoogle Scholar
  33. 33.
    Martinson G O, Werner F A, Sherber C, et al. Methane emissions from tank bromeliads in neotropical forests. Nat Geosci, 2010, 3: 1–4CrossRefGoogle Scholar
  34. 34.
    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 2000, 407: 623–626CrossRefGoogle Scholar
  35. 35.
    Orphan V J, House C H, Hinrichs K U, et al. Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 2001, 293: 484–487CrossRefGoogle Scholar
  36. 36.
    Hallam S J, Putnam N, Preston C M, et al. Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science, 2004, 305: 1457–1462CrossRefGoogle Scholar
  37. 37.
    Raghoebarsing A A, Pol A, van de Pas-Schoonen K T, et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 2006, 440: 918–921CrossRefGoogle Scholar
  38. 38.
    Ettwig K F, Butler M K, Paslier D L, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010, 464: 543–548CrossRefGoogle Scholar
  39. 39.
    Dunfield P F, Yuryev A, Senin P, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 2007, 450: 879–882CrossRefGoogle Scholar
  40. 40.
    Stetter K O. Hyperthermophilic procaryotes. FEMS Microbiol Rev, 1996, 18: 149–158CrossRefGoogle Scholar
  41. 41.
    Rabus A, Hansen T A, Widdel F. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, et al., eds. The Prokaryotes. New York: Springer, 2006. 659–768CrossRefGoogle Scholar
  42. 42.
    Shen Y A, Buick R, Canfield D E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 2001, 410: 77–81CrossRefGoogle Scholar
  43. 43.
    Shen Y A, Farquhar J, Masterson A, et al. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet Sci Lett, 2009, 279: 383–391CrossRefGoogle Scholar
  44. 44.
    Habicht K S, Gade M, Thamdrup B, et al. Calibration of sulfate levels in the Archean ocean. Science, 2002, 298: 2372–2374CrossRefGoogle Scholar
  45. 45.
    Thamdrup B, Finster K, Hansen J W, et al. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron and manganese. Appl Environ Microbiol, 1993, 59: 101–108Google Scholar
  46. 46.
    Canfield D E, Thamdrup B. The production of 34S depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 1994, 266: 1973–1975CrossRefGoogle Scholar
  47. 47.
    Johnston D T, Wing B A, Farquhar J, et al. Active microbial sulfur disproportionation in the Mesoproterozoic. Science, 2005, 310: 1477–1479CrossRefGoogle Scholar
  48. 48.
    Parnell J, Boyce A J, Mark D, et al. Early oxygenation of the terrestrial environment during the Mesoproterozoic. Nature, 2010, 468: 290–293CrossRefGoogle Scholar
  49. 49.
    Wacey D, McLoughlin N, Whitehouse M J, et al. Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. Geology, 2010, 38: 1115–1118CrossRefGoogle Scholar
  50. 50.
    Canfield D E, Farquhar J, Zerkle A L. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology, 2010, 38: 415–418CrossRefGoogle Scholar
  51. 51.
    Wortmann U G, Bernasconi S M, Bottcher M E. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology, 2001, 29: 647–650CrossRefGoogle Scholar
  52. 52.
    Sim M S, Bosak T, Ono S H. Large sulfur isotope fractionation does not require disproportionation. Science, 2011, 333: 74–78CrossRefGoogle Scholar
  53. 53.
    Canfield D E, Teske A. Late proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 1996, 382: 127–132CrossRefGoogle Scholar
  54. 54.
    Brocks J J, Love G D, Summons R E, et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 2005, 437: 866–870CrossRefGoogle Scholar
  55. 55.
    Grice K, Cao C, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 2005, 307: 706–709CrossRefGoogle Scholar
  56. 56.
    Logan G A, Hinman M C, Walter M R, et al. Biogeochemistry of the 1640 Ma McArthur River (HYC) lead-zinc ore and host sediments, Northern Territory, Australia. Geochim Cosmochim Acta, 2001, 65: 2317–2336CrossRefGoogle Scholar
  57. 57.
    Wakeham S G, Amann R, Freeman K H, et al. Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Org Geochem, 2007, 38: 2070–2097CrossRefGoogle Scholar
  58. 58.
    Sorokin D Y. Diversity of halophilic sulfur-oxidizing bacteria in hypersaline habitats. In: Dahl C, Friedrich C G, eds. Microbial Sulfur Metabolism. Berlin: Springer, 2008. 225–237CrossRefGoogle Scholar
  59. 59.
    Wacey D, Saunders M, Brasier M D, et al. Earliest microbially mediated pyrite oxidation in ∼3.4 billion-year-old sediments. Earth Planet Sci Lett, 2011, 301: 393–402CrossRefGoogle Scholar
  60. 60.
    Gruber N, Galloway J N. An Earth-system perspective of the global nitrogen cycle. Nature, 2008, 451: 293–296CrossRefGoogle Scholar
  61. 61.
    Moisander P H, Beinart R A, Hewson I, et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science, 2010, 327: 1512–1514CrossRefGoogle Scholar
  62. 62.
    Zehr J P, Jenkins B D, Short S M, et al. Nitrogenase gene diversity and microbial community structure: A cross-system comparison. Environ Microbiol, 2003, 5: 539–554CrossRefGoogle Scholar
  63. 63.
    Barron A R, Wurzburger N, Bellenger J P, et al. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci, 2009, 2: 42–45CrossRefGoogle Scholar
  64. 64.
    Severin I, Acinas S G, Stal L J. Diversity of nitrogen-fixing bacteria in cyanobacterial mats. FEMS Microbiol Ecol, 2010, 73: 514–525Google Scholar
  65. 65.
    Prosser J I, Nicol G W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol, 2008, 10: 2931–2941CrossRefGoogle Scholar
  66. 66.
    Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006, 442: 806–809CrossRefGoogle Scholar
  67. 67.
    Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA, 2005, 102: 14683–14688CrossRefGoogle Scholar
  68. 68.
    Zhang L M, Offre P R, He J Z, et al. Autotrophic ammonia oxidation by soil thaumarchaea. Proc Natl Acad Sci USA, 2010, 107: 17240–17245CrossRefGoogle Scholar
  69. 69.
    Pratscher J, Dumont M G, Conrad R. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci USA, 2011, 108: 4170–4175CrossRefGoogle Scholar
  70. 70.
    Martens-Habbena W, Berube P M, Urakawa H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 2009, 461: 976–979CrossRefGoogle Scholar
  71. 71.
    Beman J M, Chow C E, King A L, et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc Natl Acad Sci USA, 2011, 108: 208–213CrossRefGoogle Scholar
  72. 72.
    Risgaard-Petersen N, Langezaal A M, Ingvardsen S, et al. Evidence for complete denitrification in a benthic foraminifer. Nature, 2006, 443: 93–96CrossRefGoogle Scholar
  73. 73.
    Codispoti L A. An oceanic fixed nitrogen sink exceeding 400 Tg N a−1 vs the concept of homeostasis in the fixed-nitrogen inventory. Biogeosciences, 2007, 4: 233–253CrossRefGoogle Scholar
  74. 74.
    Kuypers M M M, Lavik G, Thamdrup B. Anaerobic ammonium oxidation in the marine environment. In: Neretin L, ed. Past and Present Water Column Anoxia. Dordrecht: Springer, 2006. 311–335CrossRefGoogle Scholar
  75. 75.
    Francis C A, Beman J M, Kuypers M M M. New processes and players in the nitrogen cycle: The microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J, 2007, 1: 19–27CrossRefGoogle Scholar
  76. 76.
    Li H, Chen S, Mu B Z, et al. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs. Microb Ecol, 2010, 60: 771–783CrossRefGoogle Scholar
  77. 77.
    Frei R, Gaucher C, Poulton S W, et al. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 2009, 46: 250–253CrossRefGoogle Scholar
  78. 78.
    Bauersachs T, Speelman E N, Hopmans E C, et al. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria. Proc Natl Acad Sci USA, 2010, 107: 19190–19194CrossRefGoogle Scholar
  79. 79.
    Blankenship R, Madigan M, Bauer C. Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria. In: Govindjee J, Amesz J, Barber R E, et al., eds. Anoxygenic Photosynthetic Bacteria, 2, Advances in Photosynthesis and Respiration. Netherlands: Springer, 2004. 915–928Google Scholar
  80. 80.
    Raymond J, Siefert J L, Staples C R, et al. The natural history of nitrogen fixation. Mol Biol Evol, 2004, 21: 541–554CrossRefGoogle Scholar
  81. 81.
    Thomazo C, Ader M, Philippot P. Extreme 15N-enrichments in 2.72-Gyr-old sediments: Evidence for a turning point in the nitrogen cycle. Geobiology, 2011, 9: 107–120CrossRefGoogle Scholar
  82. 82.
    Byrne N, Strous M, Crepeau V, et al. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. ISME J, 2009, 3: 117–123CrossRefGoogle Scholar
  83. 83.
    Zerkle A L, House C H, Cox R P, et al. Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology, 2006, 4: 285–297CrossRefGoogle Scholar
  84. 84.
    Bazylinski D A, Frankel R B. Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2004, 2: 217–230CrossRefGoogle Scholar
  85. 85.
    Pan Y, Deng C, Liu Q, et al. Biomineralization and magnetism of bacterial magnetosomes. Chin Sci Bull, 2004, 49: 2563–2568CrossRefGoogle Scholar
  86. 86.
    Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat Rev Mi crobiol, 2006, 4: 752–764CrossRefGoogle Scholar
  87. 87.
    Konhauser K O, Kappler A, Roden E E. Iron in microbial metabolisms. Elements, 2011, 7: 89–93CrossRefGoogle Scholar
  88. 88.
    Kappler A, Newman D K. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta, 2004, 68: 1217–1226CrossRefGoogle Scholar
  89. 89.
    Kappler A, Pasquero C, Konhauser K O, et al. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 2005, 33: 865–868CrossRefGoogle Scholar
  90. 90.
    Miot J, Benzerara K, Morin G, et al. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology, 2009, 7: 373–384CrossRefGoogle Scholar
  91. 91.
    Lovley D R, Stolz J F, Nord G L, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 1987, 330: 252–254CrossRefGoogle Scholar
  92. 92.
    Myers C R, Nealson K H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 1988, 240: 1319–1321CrossRefGoogle Scholar
  93. 93.
    Lovley D R, Holmes D E, Neivn K P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol, 2004, 49: 219–286CrossRefGoogle Scholar
  94. 94.
    Lehours A, Rabiet M, Morel-Desrosiers N, et al. Ferric iron reduction by fermentation strain BS2 isolated from an iron-rich anoxic environmental (Lake Pavin, France). Geomicrobiol J, 2010, 27: 714–722CrossRefGoogle Scholar
  95. 95.
    Coleman M L, Hedrick D B, Lovley D R, et al. Reduction of Fe(III) in sediments by sulfate reducing bacteria. Nature, 1993, 361: 436–438CrossRefGoogle Scholar
  96. 96.
    Li Y, Vali H, Sears S K, et al. Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochim Cosmochim Acta, 2004, 68: 3251–3260CrossRefGoogle Scholar
  97. 97.
    Bond D R, Lovley D R. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ Microbiol, 2002, 4: 115–124CrossRefGoogle Scholar
  98. 98.
    Liu D, Dong H, Bishop M E, et al. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochim Cosmochim Acta, 2011, 75: 1057–1071CrossRefGoogle Scholar
  99. 99.
    Vargas M, Kashefi K, Blunt-Harris E L, et al. Microbiological evidence for Fe(III) reduction on early Earth. Nature, 1998, 395: 65–67CrossRefGoogle Scholar
  100. 100.
    Schrenk M O, Edwards K J, Goodman R M, et al. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferroxidans: Implications for generation of acid mine drainage. Science, 1998, 279: 1519–1522CrossRefGoogle Scholar
  101. 101.
    Coupland K, Johnson D B. Evidence that the potential for dissimilatory ferric reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett, 2008, 279: 30–35CrossRefGoogle Scholar
  102. 102.
    Summons R E, Jahnke L L, Hope J M, et al. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 1999, 400: 554–557CrossRefGoogle Scholar
  103. 103.
    Köster J, Volkman J K, Rullkötter J, et al. Mono-, di- and trimethyl-branched alkanes in cultures of the filamentous cyanobacterium Calothrix scopulorum. Org Geochem, 1999, 30: 1367–1379CrossRefGoogle Scholar
  104. 104.
    Grice K, Schaeffer P, Schwark L, et al. Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer, Lower Rhine Basin, N.W. Germany) from free and S-bound lipids. Org Geochem, 1996, 25: 131–147CrossRefGoogle Scholar
  105. 105.
    Summons R E, Powell T G. Chlorobiaceae in Palaeozoic sea revealed by biological markers, isotopes and geology. Nature, 1986, 319: 763–765CrossRefGoogle Scholar
  106. 106.
    Sinninghe Damsté J S, Muyzer G, Abbas B, et al. The rise of the rhizosolenid diatoms. Science, 2004, 304: 584–588CrossRefGoogle Scholar
  107. 107.
    Holba A G, Tegelaar E W, Huizinga B J, et al. 24-norcholestanes as age-sensitive molecular fossils. Geology, 1998, 26: 783–786CrossRefGoogle Scholar
  108. 108.
    Bianchi T S, Canuel E A. Chemical Biomarkers in Aquatic Ecosystems. Princeton: Princeton University Press, 2011Google Scholar
  109. 109.
    Niemann H, Lösekann T, de Beer D, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 2006, 443: 854–858CrossRefGoogle Scholar
  110. 110.
    Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA, 2004, 101: 11111–11116CrossRefGoogle Scholar
  111. 111.
    Cvejic J H, Bodrossy L, Kovács K L, et al. Bacterial triterpenoids of the hopane series from the methanotrophic bacteria Methylocaldum spp: Phylogenetic implications and first evidence for an unsaturated aminobacteriohopanepolyol. FEMS Microbiol Lett, 2000, 182: 361–365CrossRefGoogle Scholar
  112. 112.
    Whitcar M J, Faber E, Schoell M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence. Geochim Cosmochim Acta, 1986, 50: 693–709CrossRefGoogle Scholar
  113. 113.
    Conti S, Artoni A, Piola G. Seep-carbonates in a thrust-related anticline at the leading edge of an orogenic wedge: The case of the middle-late Miocene Salsomaggiore Ridge (Northern Apennines, Italy). Sediment Geol, 2007, 199: 233–251CrossRefGoogle Scholar
  114. 114.
    Jiang G Q, Kennedy M J, Christie-Blick N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 2003, 426: 822–826CrossRefGoogle Scholar
  115. 115.
    Wang J S, Jiang G Q, Xiao S H, et al. Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology, 2008, 36: 347–350CrossRefGoogle Scholar
  116. 116.
    Rasmussen B. Filamentous microfossils in a 3235-million-year-old volcanogenic massive sulphide deposit. Nature, 2000, 405: 676–679CrossRefGoogle Scholar
  117. 117.
    Zhang C L, Li Y L, Wall J D, et al. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology, 2002, 30: 239–242CrossRefGoogle Scholar
  118. 118.
    Wilkin R T, Barnes H L. Formation processes of framboidal pyrite. Geochim Cosmochim Acta, 1997, 61: 323–339CrossRefGoogle Scholar
  119. 119.
    Wilkin R T, Arthur M A, Dean W E. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth Planet Sci Lett, 1997, 148: 517–525CrossRefGoogle Scholar
  120. 120.
    Sarkar A, Chakraborty P P, Mishra B, et al. Mesoproterozoic sulphidic ocean, delayed oxygenation and evolution of early life: Sulphur isotope clues from Indian Proterozoic basins. Geol Magaz, 2010, 147: 206–218CrossRefGoogle Scholar
  121. 121.
    Farquhar J, Johnston D T, Wing B A, et al. Multiple sulphur isotopic interpretations of biosynthetic pathways: Implications for biological signatures in the sulphur isotope record. Geobiology, 2003, 1: 27–36CrossRefGoogle Scholar
  122. 122.
    Johnston D T, Farquhar J, Wing B A, et al. Multiple sulfur isotope fractionations in biological systems: A case study with sulfate reducers and sulfur disproportionators. Am J Sci, 2005, 305: 645–660CrossRefGoogle Scholar
  123. 123.
    Talbot H M, Summons R E, Jahuke L L, et al. Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings. Org Geochem, 2008, 39: 232–263CrossRefGoogle Scholar
  124. 124.
    Kuypers M M M, Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event. Science, 2001, 293: 92–94CrossRefGoogle Scholar
  125. 125.
    Sinninghe Damsté J S, Schouten S, Hopmans E C, et al. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res, 2002, 43: 1641–1651CrossRefGoogle Scholar
  126. 126.
    Liu Z H, Pagani M, Zinniker D, et al. Global cooling during the Eocene-Oligocene climate transition. Science, 2009, 323: 1187–1190CrossRefGoogle Scholar
  127. 127.
    Sinninghe Damsté J S, Strous M, Rijpstra W I C, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature, 2002, 419: 708–712CrossRefGoogle Scholar
  128. 128.
    Jaeschke A, Ziegler M, Hopmans E C, et al. Molecular fossil evidence for anaerobic ammonium oxidation in the Arabian Sea over the last glacial cycle. Paleoceanography, 2009, 24: PA2202CrossRefGoogle Scholar
  129. 129.
    Kuypers M M M, van Breugel Y, Schouten S, et al. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology, 2004, 32: 853–856CrossRefGoogle Scholar
  130. 130.
    Luo G, Wang Y, Algeo T J, et al. Enhanced nitrogen fixation in the immediate aftermath of the latest Permian marine mass extinction. Geology, 2011, 39: 647–650CrossRefGoogle Scholar
  131. 131.
    Xie S, Pancost R D, Yin H, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 2005, 434: 494–497CrossRefGoogle Scholar
  132. 132.
    Meyers P A, Bernasconi S M, Yum J G. 20 My of nitrogen fixation during deposition of mid-Cretaceous black shales on the Demerara Rise, equatorial Atlantic Ocean. Org Geochem, 2009, 40: 158–166CrossRefGoogle Scholar
  133. 133.
    Zhang C L, Li Y, Ye Q, et al. Carbon isotope signatures of fatty acids in Geobacter metallireducens and Shewanella algae. Chem Geol, 2003, 195: 17–28CrossRefGoogle Scholar
  134. 134.
    Bazylinski D A, Schübbe S. Controlled biomineralization by and applications of magnetotactic bacteria. Adv Appl Microbiol, 2007, 62: 21–62CrossRefGoogle Scholar
  135. 135.
    Perez-Gonzalez T, Jimenez-Lopez C, Neal A L, et al. Magnetite biomineralization induced by Shewanella oneidensis. Geochim Cosmochim Acta, 2010, 74: 967–979CrossRefGoogle Scholar
  136. 136.
    Li Y, Pfiffner S M, Dyar M D, et al. Degeneration of biogenic superparamagnetic magnetite. Geobiology, 2009, 7: 25–34CrossRefGoogle Scholar
  137. 137.
    Kukkadapu R K, Zachara J M, Fredrickson J K, et al. Ferrous hydroxyl carbonate is a stable transformation product of biogenic magnetite. Am Mineral, 2005, 90: 510–515CrossRefGoogle Scholar
  138. 138.
    Carvallo C, Sainctavit P, Arrio M, et al. Biogenic vs. abiogenic magnetite nanoparticles: A XMCD study. Am Mineral, 2008, 93: 880–885CrossRefGoogle Scholar
  139. 139.
    Dong H, Jaisi D P, Kim J, et al. Microbe-clay mineral interactions. Am Mineral, 2009, 94: 1505–1519CrossRefGoogle Scholar
  140. 140.
    Vorhies J S, Gaines R R. Microbial dissolution of clay minerals as source of iron and silica in marine sediments. Nat Geosci, 2009, 2: 221–225CrossRefGoogle Scholar
  141. 141.
    Sanz-Montero M, Rodriguez-Aranda J P, Pérez-Soba C. Microbial weathering of Fe-rich phyllosilicates and formation of pyrite in the dolomite precipitating environment of a Miocene lacustrine system. Eur J Mineral, 2009, 21: 163–175CrossRefGoogle Scholar
  142. 142.
    Croal L R, Johnson C M, Beard B L, et al. Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta, 2004, 68: 1227–1242CrossRefGoogle Scholar
  143. 143.
    Johnson C M, Beard B L, Klein C, et al. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim Cosmochim Acta, 2008, 72: 151–169CrossRefGoogle Scholar
  144. 144.
    Kappler A, Johnson C M, Croby H A, et al. Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria. Geochim Cosmochim Acta, 2010, 74: 2826–2842CrossRefGoogle Scholar
  145. 145.
    Crosby H A, Johnson C M, Roden E E, et al. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Environ Sci Technol, 2005, 39: 6698–6704CrossRefGoogle Scholar
  146. 146.
    Grzebyk D, Schofield O, Vetriani C, et al. The Mesozoic radiation of Eukaryotic algae: The portable plastid hypothesis. J Phycol, 2003, 39: 259–267CrossRefGoogle Scholar
  147. 147.
    Raghoebarsing A A, Smolders A J P, Schmid M C, et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature, 2005, 436: 1153–1156CrossRefGoogle Scholar
  148. 148.
    Kip N, van Winden J F, Pan Y, et al. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci, 2010, 3: 617–621CrossRefGoogle Scholar
  149. 149.
    Rydin H, Gunnarsson U, Sundberg S. The role of Sphagnum in peatland development and persistence. In: Wieder R K, Vitt D H, eds. Boreal Peatland Ecosystems. New York: Springer, 2006. 47CrossRefGoogle Scholar
  150. 150.
    MacDonald G M, Beilman D W, Kremenetski K V, et al. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science, 2006, 314: 285–288CrossRefGoogle Scholar
  151. 151.
    Jones M C, Yu Z C. Rapid deglacial and early Holocene expansion of peatlands in Alaska. Proc Natl Acad Sci USA, 2010, 107: 7347–7352CrossRefGoogle Scholar
  152. 152.
    Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science, 2000, 288: 128–133CrossRefGoogle Scholar
  153. 153.
    Hinrichs K U, Hmelo L R, Sylva S P. Molecular fossil record of elevated methane levels in Late Pleistocene coastal waters. Science, 2003, 299: 1214–1217CrossRefGoogle Scholar
  154. 154.
    de Garidel-Thoron T, Beaufort L, Bassinot F, et al. Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode. Proc Natl Acad Sci USA, 2004, 101: 9187–9192CrossRefGoogle Scholar
  155. 155.
    Ruddiman W F, Guo Z T, Zhou X, et al. Early rice farming and anomalous methane trends. Quat Sci Rev, 2008, 27: 1291–1295CrossRefGoogle Scholar
  156. 156.
    van Winden J F, Kip N, Reichart G-J, et al. Lipids of symbiotic methane-oxidizing bacteria in peat moss studied using stable carbon isotope labeling. Org Geochem, 2010, 41: 1040–1044CrossRefGoogle Scholar
  157. 157.
    Chen Y, Murrell J C. Geomicrobiology: Methanotrophs in moss. Nat Geosci, 2010, 3: 595–596CrossRefGoogle Scholar
  158. 158.
    Bristow T F, Bonifacie M, Derkowsk A, et al. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature, 2011, 474: 68–71CrossRefGoogle Scholar
  159. 159.
    Tripati A, Elderfield H. Deep-sea temperature and circulation changes at the Paleocene-Eocene Thermal Maximum. Science, 2005, 308: 1894–1898CrossRefGoogle Scholar
  160. 160.
    Sluijs A, Schouten S, Pagani M, et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene Thermal Maximum. Nature, 2006, 441: 610–613CrossRefGoogle Scholar
  161. 161.
    Jenkyns H C. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world. Philios Trans R Soc Lond A, 2003, 361: 1885–1916CrossRefGoogle Scholar
  162. 162.
    Pagani M, Calderia K, Archer D, et al. An ancient carbon mystery. Science, 2006, 314: 1556–1557CrossRefGoogle Scholar
  163. 163.
    Zeebe R E, Zachos J C, Dickens G R. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. Nat Geosci, 2009, 2: 1–5CrossRefGoogle Scholar
  164. 164.
    Pancost R D, Steart D S, Handley L, et al. Increased terrestrial methane cycling at the Palaeocene-Eocene thermal maximum. Nature, 2007, 449: 232–235CrossRefGoogle Scholar
  165. 165.
    Xie S, Pancost R D, Huang J, et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. Geology, 2007, 35: 1083–1086CrossRefGoogle Scholar
  166. 166.
    Wignall P B, Sun Y D, Bond D P G, et al. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science, 2009, 324: 1179–1182CrossRefGoogle Scholar
  167. 167.
    Stanley S M. Relation of Phanerozoic stable isotope excursions to climate, bacterial metabolism, and major extinctions. Proc Natl Acad Sci USA, 2010, 107: 19185–19189CrossRefGoogle Scholar
  168. 168.
    Luo G, Huang J, Xie S, et al. Relationships between carbon isotope evolution and variation of microbes during the Permian-Triassic transition at Meishan Section, South China. Int J Earth Sci, 2010, 99: 775–784CrossRefGoogle Scholar
  169. 169.
    Canfield D E. A new model for Proterozoic ocean chemistry. Nature, 1998, 396: 450–453CrossRefGoogle Scholar
  170. 170.
    Poulton S W, Fralick P W, Canfield D E. The transition to a sulphidic ocean ∼1.84 billion years ago. Nature, 2004, 431: 173–177CrossRefGoogle Scholar
  171. 171.
    Gill B C, Lyons T W, Young S A, et al. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 2011, 469: 80–83CrossRefGoogle Scholar
  172. 172.
    Armstrong H A, Abbott G D, Turner B R, et al. Black shale deposition in an Upper Ordovician-Silurian permanently stratified, periglacial basin, southern Jordan. Palaeogeogr Palaeoclima Palaeoecol, 2009, 273: 368–377CrossRefGoogle Scholar
  173. 173.
    Marynowski L, Filipiak P. Water column euxinia and wildfire evidence during deposition of the Upper Famennian Hangenberg event horizon from the Holy Cross Mountains (central Poland). Geol Magaz, 2007, 144: 569–595CrossRefGoogle Scholar
  174. 174.
    Cao C, Love G D, Hays L E, et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett, 2009, 281: 188–201CrossRefGoogle Scholar
  175. 175.
    van Bentum E C, Hetzel A, Brumsack H-J, et al. Reconstruction of water column anoxia in the equatorial Atlantic during the Cenomanian-Turonian oceanic anoxic event using biomarker and trace metal proxies. Palaeogeogr Palaeoclima Palaeoecol, 2009, 280: 489–498CrossRefGoogle Scholar
  176. 176.
    Luo G, Kump L R, Wang Y, et al. Isotopic evidence for an anomalously low oceanic sulphate concentration following end-Permian mass extinction. Earth Planet Sci Lett, 2010, 300: 101–111CrossRefGoogle Scholar
  177. 177.
    Schulz H N, Brinkhoff T, Ferdelman T G, et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science, 1999, 284: 493–495CrossRefGoogle Scholar
  178. 178.
    Kuypers M M M, Sliekers A O, Lavik G, et al. Anaerobic ammoni um oxidation by anammox bacteria in the Black Sea. Nature, 2003, 422: 608–611CrossRefGoogle Scholar
  179. 179.
    Jenkyns H C, Matthews A, Tsikos H, et al. Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography, 2007, 22: 1–17CrossRefGoogle Scholar
  180. 180.
    Kuypers M M M, Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a Mid-Cretaceous oceanic anoxic event. Science, 2001, 293: 92–94CrossRefGoogle Scholar
  181. 181.
    Okano K, Sawada K, Takashima R, et al. Further examples of archaeal-derived hydrocarbons in mid-Cretaceous Oceanic Anoxic Event (OAE) 1b sediments. Org Geochem, 2008, 39: 1088–1091CrossRefGoogle Scholar
  182. 182.
    Kah L C, Lyons T W, Frank T D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 2004, 431: 834–838CrossRefGoogle Scholar
  183. 183.
    Lowenstein T K, Hardie L A, Timofeeff M N, et al. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology, 2003, 31: 857–860CrossRefGoogle Scholar
  184. 184.
    Newton R J, Reeves E P, Kafousia N, et al. Low marine sulfate concentrations and the isolation of the European epicontinental sea during the Early Jurassic. Geology, 2011, 39: 7–10CrossRefGoogle Scholar
  185. 185.
    Canfield D E, Farquhar J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci USA, 2009, 106: 8123–8127CrossRefGoogle Scholar
  186. 186.
    Scholten J C M, Bodegom P M, Vogelaar J, et al. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment. FEMS Microbiol Ecol, 2002, 42: 375–385CrossRefGoogle Scholar
  187. 187.
    Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature, 1982, 296: 643–645CrossRefGoogle Scholar
  188. 188.
    Valentine D L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: A review. Anton Leeuw, 2002, 81: 271–282CrossRefGoogle Scholar
  189. 189.
    Ventura G T, Kenig F, Reddy C M, et al. Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere. Proc Natl Acad Sci USA, 2007, 104: 14260–14265CrossRefGoogle Scholar
  190. 190.
    Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran Ocean. Science, 2010, 328: 80–83CrossRefGoogle Scholar
  191. 191.
    Poulton S W, Fralick P W, Canfield D E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat Geosci, 2010, 3: 486–490CrossRefGoogle Scholar
  192. 192.
    Hurtgen M T, Pruss S B, Knoll A H. Evaluating the relationship between the carbon and sulfur cycles in the later Cambrian ocean: An example from the Port au Port Group, western Newfoundland, Canada. Earth Planet Sci Lett, 2009, 281: 288–297CrossRefGoogle Scholar
  193. 193.
    Canfield D E, Glazer A N, Falkowski P G. The evolution and future of Earth nitrogen cycle. Science, 2010, 330: 192–196CrossRefGoogle Scholar
  194. 194.
    Castro H, Ogram A, Reddy K R. Phylogenetic Characterization of Methanogenic Assemblages in Eutrophic and Oligotrophic Areas of the Florida Everglades. Appl Environ Microbiol, 2004, 70: 6559–6568CrossRefGoogle Scholar
  195. 195.
    Zehr J P, Kudela R M. Nitrogen cycle of the open ocean: From genes to ecosystems. Annu Rev Mar Sci, 2011, 3: 197–225CrossRefGoogle Scholar
  196. 196.
    Mahaffey C, Michaels A F, Capone D G. The conundrum of marine N2 fixation. Am J Sci, 2005, 305: 546–595CrossRefGoogle Scholar
  197. 197.
    Moore M C, Mills M M, Achterberg E P, et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat Geosci, 2009, 2: 867–871CrossRefGoogle Scholar
  198. 198.
    Saito M A, Bertrand E M, Dutkiewicz S, et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc Natl Acad Sci USA, 2011, 108: 2184–2189CrossRefGoogle Scholar
  199. 199.
    Deutsch C, Sarmiento J L, Sigman D M, et al. Spatial coupling of nitrogen inputs and losses in the ocean. Nature, 2007, 445: 163–167CrossRefGoogle Scholar
  200. 200.
    Levitan O, Rosenberg G, Setlik I, et al. Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Glob Change Biol, 2007, 13: 531–538CrossRefGoogle Scholar
  201. 201.
    Xie S, Pancost R D, Wang Y, et al. Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. Geology, 2010, 38: 447–450CrossRefGoogle Scholar
  202. 202.
    Shi D, Xu Y, Hopkinson B M, et al. Effect of ocean acidification on iron availability to marine phytoplankton. Science, 2010, 327: 676–679CrossRefGoogle Scholar
  203. 203.
    Mort H P, Adatte T, Follmi K B, et al. Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology, 2007, 35: 483–486CrossRefGoogle Scholar
  204. 204.
    Lehmann B, Nagler T F, Holland H D, et al. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology, 2007, 35: 403–406CrossRefGoogle Scholar
  205. 205.
    Klein C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geological setting, mineralogy, metamorphism, geochemistry, and origin. Amer Mineral, 2005, 90: 1473–1499CrossRefGoogle Scholar
  206. 206.
    Canfield D E, Habicht K S, Thamdrup B. The Archean sulfur cycle and the early history of atmospheric oxygen. Nature, 2000, 288: 658–661Google Scholar
  207. 207.
    Holland H. The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B, 2006, 361: 903–915CrossRefGoogle Scholar
  208. 208.
    Posth N R, Hegler F, Konhauser K O, et al. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nat Geosci, 2008, 1: 703–708CrossRefGoogle Scholar
  209. 209.
    Konhauser K O, Amskold L, Lalonde S V, et al. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet Sci Lett, 2007, 258: 87–100CrossRefGoogle Scholar
  210. 210.
    Planavsky N, Rouxel O, Bekker A, et al. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth Planet Sci Lett, 2009, 286: 230–242CrossRefGoogle Scholar
  211. 211.
    Li Y, Konhauser K O, Cole D R, et al. Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology, 2011, 29: 707–710CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • ShuCheng Xie
    • 1
  • Huan Yang
    • 1
  • GenMing Luo
    • 2
  • XianYu Huang
    • 2
  • Deng Liu
    • 1
  • YongBiao Wang
    • 2
  • YiMing Gong
    • 1
  • Ran Xu
    • 1
  1. 1.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina

Personalised recommendations