Chinese Science Bulletin

, Volume 57, Issue 1, pp 111–118 | Cite as

A deep-bodied ginglymodian fish from the Middle Triassic of eastern Yunnan Province, China, and the phylogeny of lower neopterygians

Open Access
Article Geology

Abstract

The Ginglymodi are a group of ray-finned fishes that make up one of three major subdivisions of the infraclass Neopterygii. Extant ginglymodians are represented by gars, which inhabit freshwater environments of North and Central America and Cuba. Here, we report the discovery of well-preserved fossils of a new ginglymodian, Kyphosichthys grandei gen. et sp. nov., from the Middle Triassic (Anisian) marine deposits (Guanling Formation) in Luoping, eastern Yunnan Province, China. The discovery documents the first known fossil record of highly deep-bodied ginglymodians, adding new information on the early morphological diversity of this group. The studies of functional morphology of extant deep-bodied fishes indicate that Kyphosichthys is not a fast swimmer but has a good performance in precise maneuvering, representing a morphological adaptation to structurally complex habitats (e.g. thick macrophyte beds, rocky areas, or coral reefs), which differs from the other members of this group. A cladistic analysis with the new fish taxon included supports the hypothesis that the Ginglymodi are more closely related to the Halecomorphi than to the Teleostei. Represented by Felberia, Kyphosichthys, and Dapedium, a highly deep and short fish body type has independently evolved at least three times in the stem-group neopterygians, ginglymodians, and basal teleosts within the lower neopterygians of the Triassic.

Keywords

deep-bodied fish Osteology Semionotidae Ginglymodi Holostei 

Supplementary material

11434_2011_4719_MOESM1_ESM.pdf (447 kb)
Supplementary material, approximately 447 KB.

References

  1. 1.
    Nelson J S. Fishes of the World. 4th ed. New Jersey: John Wiley & Sons Inc, 2006Google Scholar
  2. 2.
    Patterson C. Interrelationships of holosteans. In: Greenwood P H, Miles R S, Patterson C, eds. Interrelationships of Fishes. Zool J Linn Soc, 1973, 53(Suppl): 233–305Google Scholar
  3. 3.
    Grande L. An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The resurrection of holostei. Copeia, 2010, 10(Suppl): 1–871Google Scholar
  4. 4.
    Gardiner B G. Osteichthyes: Basal Actinopterygians. In: Benton M J, ed. Fossil Record II. London: Chapman and Hall, 1993. 611–619Google Scholar
  5. 5.
    Grande L, Bemis W E. A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of natural history. J Vert Paleontol, 1998, 4(Suppl): 1–690CrossRefGoogle Scholar
  6. 6.
    Xu G H, Gao K Q. A new scanilepiform from the Lower Triassic of northern Gansu Province, China, and phylogenetic relationships of non-teleostean Actinopterygii. Zool J Linn Soc, 2011, 161: 595–612CrossRefGoogle Scholar
  7. 7.
    Chang M M, Miao D S. An overview of Mesozoic fishes in Asia. In: Arratia G, Tintori A, eds. Mesozoic Fishes 3-Systematics, Paleoenvironments and Biodiversity, 2001, München, Germany. München: Verlag Dr Friedrich Pfeil, 2004. 535–563Google Scholar
  8. 8.
    Jin F. An overview of Triassic fishes from China. Vert PalAsiat, 2006, 44: 28–42Google Scholar
  9. 9.
    Sun Z Y, Tintori A, Jiang D Y, et al. A new perleidiform (Actinopterygii, Osteichthyes) from the Middle Anisian (Middle Triassic) of Yunnan, South China. Acta Geol Sin, 2009, 83: 460–470CrossRefGoogle Scholar
  10. 10.
    Sun Z Y, Tintori A, Lombardo C, et al. A new species of the genus Colobodus Agassiz, 1844 (Osteichthyes, Actinopterygii) from the Pelsonian (Anisian, Middle Triassic) of Guizhou, South China. Riv It di Paleontol Stratigr, 2008, 114: 363–376Google Scholar
  11. 11.
    Tintori A, Sun Z Y, Lombardo C, et al. A new Neopterygian from the Middle Triassic of Luoping County (South China). Riv It di Paleontol Stratigr, 2010, 116: 161–172Google Scholar
  12. 12.
    López-Arbarello A, Sun Z Y, Sferco E, et al. New Species of Sangiorgioichthys Tintori and Lombardo, 2007 (Neopterygii, Semionotiformes) from the Anisian of Luoping (Yunnan Province, South China). Zootaxa, 2011, 2749: 25–39Google Scholar
  13. 13.
    Wu F X, Sun Y L, Hao W C, et al. New species of Saurichthys (Actinopterygii: Saurichthyidae) from Middle Triassic (Anisian) of Yunnan Province, China. Acta Geol Sin, 2009, 83: 440–450CrossRefGoogle Scholar
  14. 14.
    Zhang Q Y, Zhou C Y, Lü T, et al. Discovery and significance of the Middle Trassic Anisian Biota from Luoping, Yunnan Province. Geol Rev, 2008, 54: 523–526Google Scholar
  15. 15.
    Gardiner B G. Further notes on Palaeoniscoid fishes with a classification of the Chondrostei. Bull Br Mus Nat Hist (Geol), 1967, 14: 143–206Google Scholar
  16. 16.
    Nelson G J. Gill arches and the phylogeny of fishes, with notes on the classification of vertebrates. Bul Amer Mus Natur Hist, 1969, 141: 475–552Google Scholar
  17. 17.
    Olsen P E. The skull and pectoral girdle of the parasemionotid fish Watsonulus eugnathoides from the Early Triassic Sakemena Group of Madagascar with comments on the relationships of the holostean fishes. J Vert Paleontol, 1984, 4: 481–499CrossRefGoogle Scholar
  18. 18.
    Kikugawa K, Katoh K, Shigehiro K, et al. Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes. BMC Biol, 2004, 2: 1–11CrossRefGoogle Scholar
  19. 19.
    Hurley I A, Mueller R L, Dunn K A, et al. A new time-scale for ray-finned fish evolution. Proc R Soc Ser B, 2007, 274: 489–498CrossRefGoogle Scholar
  20. 20.
    Li C, Lu G, Ortí G. Optimal data partitioning and a test case for ray-finned fishes (Actinopterygii) based on ten nuclear loci. Syst Biol, 2008, 57: 519–539CrossRefGoogle Scholar
  21. 21.
    Swofford D L. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sunderland, Massachusetts: Sinauer Associates, 2003Google Scholar
  22. 22.
    Westoll T S. The Haplolepidae, a new family of Late Carboniferous bony fishes — A study in taxonomy and evolution. Bull Am Mus Nat Hist, 1944, 83: 1–121Google Scholar
  23. 23.
    Cope E D. Geology and Paleontology. Am Nat, 1887, 21: 1014–1019Google Scholar
  24. 24.
    Regan C T. The skeleton of Lepidosteus, with remarks on the origin and evolution of the lower neopterygian fishes. Proc Zool Soc Lond, 1923, 1923: 445–461Google Scholar
  25. 25.
    Müller J. Über den Bau und die Grenzen der Ganoiden, und über das natürliche System der Fische. Berlin: Physikalisch-Mathematische Abhandlungen der königlichen Akademie der Wissenschaften, 1844, 1845: 117–216Google Scholar
  26. 26.
    Patterson C, Rosen D E. Review of the ichthyodectiform and other Mesozoic fishes and the theory and practice of classifying fossils. Bull Am Mus Nat Hist, 1977, 158: 81–172Google Scholar
  27. 27.
    Olsen P E, McCune A R. Morphology of the Semionotus elegans group from the Early Jurassic part of the Newark Supergroup of eastern North America, with comments on the family Semionotidae (Pisces: Neopterygii). J Vert Paleontol, 1991, 11: 269–292CrossRefGoogle Scholar
  28. 28.
    Xu G H, Chang M M. Redescription of †Paralycoptera wui Chang & Chou, 1977 (Teleostei: Osteoglossoidei) from the Early Cretaceous of eastern China. Zool J Linn Soc, 2009, 157: 83–106CrossRefGoogle Scholar
  29. 29.
    Patterson C. Morphology and interrelationships of primitive actinopterygian fishes. Am Zool, 1982, 22: 241–259Google Scholar
  30. 30.
    Gardiner B G. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bull Br Mus Nat Hist (Geol), 1984, 37: 173–428Google Scholar
  31. 31.
    Gardiner B G, Schaeffer B. Interrelationships of lower Actinopterygian fishes. Zool J Linn Soc, 1989, 97: 135–187CrossRefGoogle Scholar
  32. 32.
    Gardiner B G, Maisey J G, Littlewood D T J. Interrelationships of basal neopterygians. In: Stiassney M L J, Parenti L R, Johnson G D, eds. Interrelationships of Fishes. San Diego: Academic Press, 1996. 117–146CrossRefGoogle Scholar
  33. 33.
    Gardiner B G, Schaeffer B, Masserie J A. A review of the lower actinopterygian phylogeny. Zool J Linn Soc, 2005, 144: 511–525CrossRefGoogle Scholar
  34. 34.
    Pinna M C C. Teleostean monophyly. In: Stiassney M L J, Parenti L R, Johnson G D, eds. Interrelationships of Fishes. San Diego: Academic Press, 1996Google Scholar
  35. 35.
    Bemis W, Findeis E, Grande L. An overview of Acipenseriformes. Environ Biol Fishes, 1997, 48: 25–71CrossRefGoogle Scholar
  36. 36.
    Coates M I. Endocranial preservation of a Carboniferous actinopterygian from Lancashire, UK, and the interrelationships of primitive actinopterygians. Phil Tran R Soc Lond Ser B, 1999, 354: 435–462CrossRefGoogle Scholar
  37. 37.
    Poplin C, Lund R. Two new deep-bodied palaeoniscoid actinopterygians from Bear Gulch (Montana, USA, Lower Carboniferous). J Vert Paleontol, 2000, 20: 428–449CrossRefGoogle Scholar
  38. 38.
    Schaeffer B. Late Triassic fishes from the Western United States. Bull Am Mus Nat Hist, 1967, 135: 285–342Google Scholar
  39. 39.
    Jain S L. New specimens of Lower Jurassic holostean fishes from India. Palaeontology, 1973, 16: 149–177Google Scholar
  40. 40.
    Tinotori A. Hypsisomatic Semionotidae (Pisces, Actinopterygii) from the Upper Triassic of Lombardy (N. Italy). Riv It di Paleontol Stratigr, 1983, 88: 417–442Google Scholar
  41. 41.
    Lehman J P. Actinopterygii. In: Piveteau J. ed. Traité de Paléontologie IV (3). Paris: Masson et Cie, 1966. 1–242Google Scholar
  42. 42.
    Thies D, Herzog A. New information on Dapedium Leach 1822 (Actinopterygii, Semionotiformes). In: Arratia G, Schultze H P, eds. Mesozoic Fishes 2—Systematics and Fossil record. München, Germany, München: Verlag Dr. Friedrich Pfeil, 1999. 143–152Google Scholar
  43. 43.
    Drucker E G, Lauder G V. Wake dynamics and locomotor function in fishes: Interpreting evolutionary patterns in pectoral fin design. Integr Compar Biol, 2002, 42: 997–1008CrossRefGoogle Scholar
  44. 44.
    Standen E M, Lauder G V. Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: Three-dimensional kinematics during propulsion and maneuvering. J Exp Biol, 2005, 208: 2753–2763CrossRefGoogle Scholar
  45. 45.
    Lombardo C, Tintori A. New perleidiforms from the Triassic of the Southern Alps and the revision of Serrolepis from the Triassic of Württemberg (Germany). In: Arratia G, Tintori A, eds. Mesozoic Fishes 3—Systematics, Paleoenvironments and Biodiversity. München, Germany, München: Verlag Dr. Friedrich Pfeil, 2004. 179–196Google Scholar
  46. 46.
    Ruehl C B, Shervette V, Dewitt T J. Replicated shape variation between simple and complex habitats in two estuarine fishes. Biol J Linn Soc, 2011, 103: 147–158CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina

Personalised recommendations