Chinese Science Bulletin

, 56:3178 | Cite as

Advancements in organic nonvolatile memory devices

  • Xin Liu
  • ZhuoYu Ji
  • Ming Liu
  • LiWei Shang
  • DongMei Li
  • YueHua Dai
Open Access
Review Semiconductor Technology

Abstract

As one of the most promising candidates for next generation storage media, organic memory devices have aroused worldwide research interest in both academia and industry. In recent years, organic memories have experienced rapid progress. We review the development of organic resistive switching memories in terms of structure, characteristics, materials used, and integration. Some basic concepts are discussed, as well as the obstacles hindering the development and possible commercialization of organic memory devices.

Keywords

organic memory two-terminal memory devices organic thin-film transistors integration multilevel effect 

References

  1. 1.
    Velu G, Legrand C, Tharaud O, et al. Low driving voltages and memory effect in organic thin-film transistors with a ferroelectric gate insulator. Appl Phys Lett, 2001, 79: 659–661CrossRefGoogle Scholar
  2. 2.
    Unni K N N, De Bettignies R, Dabos-Seignon S, et al. A nonvolatile memory element based on an organic field-effect transistor. Appl Phys Lett, 2004, 85: 1823–1825CrossRefGoogle Scholar
  3. 3.
    Naber R C G, De Boer B, Blom P W M. Low-voltage polymer fieldeffect transistors for nonvolatile memories. Appl Phys Lett, 2005, 87: 203509CrossRefGoogle Scholar
  4. 4.
    Stadlober B, Zirkl M, Beutl M, et al. High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer filmgate dielectric. Appl Phys Lett, 2005, 86: 242902CrossRefGoogle Scholar
  5. 5.
    Yildirim F A, Ucurum C, Schliewe R R, et al. Spin-cast composite gate insulation for low driving voltages and memory effect in organic field-effect transistors. Appl Phys Lett, 2007, 90: 083501CrossRefGoogle Scholar
  6. 6.
    Singh T B, Marjanovic N, Matt G J, et al. Nonvolatile organic fieldeffect transistor memory element with a polymeric gate electret. Appl Phys Lett, 2004, 85: 5409–5411CrossRefGoogle Scholar
  7. 7.
    Liu Z, Xue F, Su Y, et al. Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric. IEEE Trans Nanotechnol, 2006, 5: 379–384CrossRefGoogle Scholar
  8. 8.
    Zhen L, Guan W, Shang L, et al. Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric. J Phys D: Appl Phys, 2008, 41: 135111CrossRefGoogle Scholar
  9. 9.
    Chang C C, Pei Z, Chan Y J. Artificial electrical dipole in polymer multilayers for nonvolatile thin film transistor memory. Appl Phys Lett, 2008, 93: 143302CrossRefGoogle Scholar
  10. 10.
    Burrows P E, Forrest S R, Sibley S P. Color-tunable organic lightemitting devices. Appl Phys Lett, 1996, 69: 2959–2961CrossRefGoogle Scholar
  11. 11.
    Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers. Nature, 1999, 397: 121–128CrossRefGoogle Scholar
  12. 12.
    Meyer J, Hamwi S, Bulow T, et al. Highly efficient simplified organic light emitting diodes. Appl Phys Lett, 2007, 91: 113506CrossRefGoogle Scholar
  13. 13.
    Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells. Adv Funct Mater, 2001, 11: 15–26CrossRefGoogle Scholar
  14. 14.
    Peumans P, Uchida S, Forrest S R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature, 2003, 425: 158–162CrossRefGoogle Scholar
  15. 15.
    Gunes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107: 1324–1338CrossRefGoogle Scholar
  16. 16.
    Chen Y, Jung G Y, Ohlberg D A A, et al. Nanoscale molecular-switch crossbar circuits. Nanotechnology, 2003, 14: 462–468CrossRefGoogle Scholar
  17. 17.
    Chen Y, Ohlberg D A A, Li X M, et al. Nanoscale molecular-switch devices fabricated by imprint lithography. Appl Phys Lett, 2003, 82: 1610–1612CrossRefGoogle Scholar
  18. 18.
    Jung G Y, Ganapathiappan S, Ohlberg D A A, et al. Fabrication of a 34×34 crossbar structure at 50 nm half-pitch by UV-based nanoim-print lithography. Nano Lett, 2004, 4: 1225–1229CrossRefGoogle Scholar
  19. 19.
    Wu W, Jung G Y, Olynick D L, et al. One-kilobit crossbar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography. Appl Phys A, 2005, 80: 1173–1178CrossRefGoogle Scholar
  20. 20.
    Green J E, Choi J W, Boukai A, et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature, 2007, 445: 414–417CrossRefGoogle Scholar
  21. 21.
    Sekitani T, Yokota T, Zschieschang U, et al. Organic nonvolatile memory transistors for flexible sensor arrays. Science, 2009, 326: 1516–1519CrossRefGoogle Scholar
  22. 22.
    Xu W, Chen G R, Li R J, et al. Two new all-organic complexes with electrical bistable states. Appl Phys Lett, 1995, 67: 2241–2242CrossRefGoogle Scholar
  23. 23.
    Chu C W, Ouyang J Y, Tseng J H, et al. Organic donor-acceptor system exhibiting electrical bistability for use in memory devices. Adv Mater, 2005, 17: 1440–1443CrossRefGoogle Scholar
  24. 24.
    Tu C H, Lai Y S, Kwong D L. Memory effect in the current-voltage characteristic of 8-hydroquinoline aluminum salt films. IEEE Electron Device Lett, 2006, 27: 354–356CrossRefGoogle Scholar
  25. 25.
    Ma L P, Liu J, Yang Y. Organic electrical bistable devices and rewritable memory cells. Appl Phys Lett, 2002, 80: 2997–2999CrossRefGoogle Scholar
  26. 26.
    Tondelier D, Lmimouni K, Vuillaume D, et al. Metal/organic/metal bistable memory devices. Appl Phys Lett, 2004, 85: 5763–5765CrossRefGoogle Scholar
  27. 27.
    Ouyang J Y, Chu C W, Szmanda C R, et al. Programmable polymer thin film and non-volatile memory device. Nat Mater, 2004, 3: 918–922CrossRefGoogle Scholar
  28. 28.
    Prakash A, Ouyang J Y, Lin J L, et al. Polymer memory device based on conjugated polymer and gold nanoparticles. J Appl Phys, 2006, 100: 054309CrossRefGoogle Scholar
  29. 29.
    Lee P T, Chang T Y, Chen S Y. Tuning of the electrical characteristics of organic bistable devices by varying the deposition rate of Alq3 thin film. Org Electron, 2008, 9: 916–920CrossRefGoogle Scholar
  30. 30.
    Huang J, Virji S, Weiller B H, et al. Nanostructured polyaniline sensors. Chem Eur J, 2004, 10: 1314–1319CrossRefGoogle Scholar
  31. 31.
    Majumdar H S, Bandyopadhyay A, Bolognesi A, et al. Memory device applications of a conjugated polymer: Role of space charges. J Appl Phys, 2002, 91: 2433–2437CrossRefGoogle Scholar
  32. 32.
    Bozano L D, Kean B W, Deline V R, et al. Mechanism for bistability in organic memory elements. Appl Phys Lett, 2004, 84: 607–609CrossRefGoogle Scholar
  33. 33.
    Ouisse T, Stéphan O. Electrical bistability of polyfluorene devices. Org Electron, 2004, 5: 251–256CrossRefGoogle Scholar
  34. 34.
    Oyamada T, Tanaka H, Matsushige K, et al. Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition. Appl Phys Lett, 2003, 83: 1252–1254CrossRefGoogle Scholar
  35. 35.
    Mahapatro A K, Agrawal R, Ghosh S. Electric-field-induced conductance transition in 8-hydroxyquinoline aluminum (Alq3). J Appl Phys, 2004, 96: 3583–3585CrossRefGoogle Scholar
  36. 36.
    Kuang Y B, Huang R, Tang Y, et al. Novel thermally stable single-component organic-memory cell based on oxotitanium phthalocyanine material. IEEE Electron Device Lett, 2009, 30: 931–933CrossRefGoogle Scholar
  37. 37.
    Chen J S, Ma D G. Single-layer organic memory devices based on N, N′-di(naphthalene-l-yl)-N,N′-diphenyl-benzidine. Appl Phys Lett, 2005, 87: 023505CrossRefGoogle Scholar
  38. 38.
    Liu X H, Ji Z Y, Tu D Y, et al. Organic nonpolar nonvolatile resistive switching in poly(3,4-ethylene-dioxythiophene): Polystyrenesulfonate thin film. Org Electron, 2009, 10: 1191–1194CrossRefGoogle Scholar
  39. 39.
    Potember R S, Poehler T O. Electrical switching and memory phenomena in Cu-TCNQ thin. films. Appl Phys Lett, 1979, 34: 405–407CrossRefGoogle Scholar
  40. 40.
    Gao H, Xue Z, Pang S. Ionized cluster beam deposition of C60, Ag-TCNQ thin films and electrical switching phenomena. J Phys D: Appl Phys, 1996, 29: 1868–1872CrossRefGoogle Scholar
  41. 41.
    Tu D Y, Ji Z Y, Shang L W, et al. Organic, bistable devices with AgTCNQ charge transfer complex by vacuum co-deposition. J Semicondu, 2008, 29: 50–54Google Scholar
  42. 42.
    Ma L P, Xu Q F, Yang Y. Organic nonvolatile memory by controlling the dynamic copper-ion concentration within organic layer. Appl Phys Lett, 2004, 84: 4908–4910CrossRefGoogle Scholar
  43. 43.
    Ma L P, Liu J, Yang Y. US patent application. 2001, US 01/17 206Google Scholar
  44. 44.
    Reddy V S, Karak S, Ray S K, et al. Carrier transport mechanism in aluminum nanoparticle embedded AlQ3 structures for organic bistable memory devices. Org Electron, 2009, 10: 138–144CrossRefGoogle Scholar
  45. 45.
    Simmons J G, Verderber R R. New conduction and reversible memory phenomena in thin insulating films. Proc R Soc Lond A, 1967, 301: 77–102CrossRefGoogle Scholar
  46. 46.
    Kang S H, Crisp T, Kymissis I, et al. Memory effect from charge trapping in layered organic structures. Appl Phys Lett, 2004, 85: 4666–4668CrossRefGoogle Scholar
  47. 47.
    Tang W, Shi H, Xu G, et al. Memory effect and negative differential resistance by electrode-induced two-dimensional single-electron tunneling in molecular and organic electronic devices. Adv Mater, 2005, 17: 2307–2311CrossRefGoogle Scholar
  48. 48.
    Ouyang J, Chu C W, Tseng R J, et al. Organic memory device fabricated through solution processing. Proc IEEE, 2005, 93: 1287–1296CrossRefGoogle Scholar
  49. 49.
    Prakash A, Ouyang J Y, Lin J L, et al. Polymer memory device based on conjugated polymer and gold nanoparticles. J Appl Phys, 2006, 100: 054309CrossRefGoogle Scholar
  50. 50.
    Song Y, Ling Q D, Lim S L, et al. Electrically bistable thin-film device based on PVK and GNPs polymer material. IEEE Electron Device Lett, 2007, 28: 107–110CrossRefGoogle Scholar
  51. 51.
    Tseng R J, Baker C O, Shedd B, et al. Charge transfer effect in the polyaniline-gold nanoparticle memory system. Appl Phys Lett, 2007, 90: 053101CrossRefGoogle Scholar
  52. 52.
    Carchano H, Lacoste R, Segui Y. Bistable electrical switching in polymer thin films. Appl Phys Lett, 1971, 19: 414–416CrossRefGoogle Scholar
  53. 53.
    Henisch H K, Smith W R. Switching in organic polymer films. Appl Phys Lett, 1974, 24: 589–591CrossRefGoogle Scholar
  54. 54.
    Segui Y, Ai B, Carchano H. Switching in polystyrene films: Transition from on to off state. J Appl Phys, 1976, 47: 140–143CrossRefGoogle Scholar
  55. 55.
    Pender L F, Fleming R J. Memory switching in glow discharge polymerized thin films. J Appl Phys, 1975, 46: 3426–3431CrossRefGoogle Scholar
  56. 56.
    Tu C H, Lai Y S, Kwong D L. Memory effect in the current-voltage characteristic of 8-hydroquinoline aluminum salt films. IEEE Electron Device Lett, 2006, 27: 354–356CrossRefGoogle Scholar
  57. 57.
    Lai Y S, Tu C H, Kwong D L, et al. Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications. Appl Phys Lett, 2005, 87: 122101CrossRefGoogle Scholar
  58. 58.
    Ouyang M, Hou S M, Chen H F, et al. A new organic-organic complex thin film with reproducible electrical bistability properties. Phys Lett A, 1997, 235: 413–417CrossRefGoogle Scholar
  59. 59.
    Gao H J, Sohlberg K, Xue Z Q, et al. Reversible, nanometer-scale conductance transitions in an organic complex. Phys Rev Lett, 2000, 84: 1780–1783CrossRefGoogle Scholar
  60. 60.
    Liu Z C, Xue F L, Su Y, et al. Electrically bistable memory device based on spin-coated molecular complex thin film. IEEE Electron Device Lett, 2006, 27: 151–153CrossRefGoogle Scholar
  61. 61.
    Ma Y, Cao X B, Li G, et al. Improving the on/off ratio and reversibility of recording by rational structural arrangement of donor-acceptor molecules. Adv Funct Mater, 2010, 20: 803–810CrossRefGoogle Scholar
  62. 62.
    Ha H, Kim O. Electrode-material-dependent switching characteristics of organic nonvolatile memory devices based on poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) film. IEEE Electron Device Lett, 2010, 31: 368–370CrossRefGoogle Scholar
  63. 63.
    Ouyang J Y, Yang Y. Polymer:metal nanoparticle devices with electrode-sensitive bipolar resistive switchings and their application as nonvolatile memory devices. Appl Phys Lett, 2010, 96: 063506CrossRefGoogle Scholar
  64. 64.
    Hua Z Y, Chen G R. A new material for optical, electrical and electronic thin film memories. Vacuum, 1992, 43: 1019–1023CrossRefGoogle Scholar
  65. 65.
    Kinoshita K, Tsunoda K, Sato Y H, et al. Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance. Appl Phys Lett, 2008, 93: 033506CrossRefGoogle Scholar
  66. 66.
    Lee M J, Park Y, Suh D S, et al. Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv Mater, 2007, 19: 3919–3923CrossRefGoogle Scholar
  67. 67.
    Kang B S, Ahn S E, Lee M J, et al. High-current-density CuOx/InZnOx thin-film diodes for cross-point memory applications. Adv Mater, 2008, 20: 3066–3069CrossRefGoogle Scholar
  68. 68.
    Tu D Y, Liu M, Shang L W, et al. Asymmetric electrical bistable behavior of an eicosanoic acid/zirconium oxide bilayer system with rectifying effect. Appl Phys Lett, 2008, 92: 123302CrossRefGoogle Scholar
  69. 69.
    Kim T W, Choi H, Oh S H, et al. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure. Nanotechnology, 2009, 21: 025201CrossRefGoogle Scholar
  70. 70.
    Sato Y, Tsunoda K, Kinoshita K, et al. Sub-100-μA reset current of nickel oxide resistive memory through control of filamentary conductance by current limit of MOSFET. IEEE Trans Electron Device, 2008, 55: 1185–1191CrossRefGoogle Scholar
  71. 71.
    Lin H T, Pei Z W, Chen J R, et al. A UV-erasable stacked diode-switch organic nonvolatile bistable memory on plastic substrates. IEEE Electron Device Lett, 2009, 30: 18–20CrossRefGoogle Scholar
  72. 72.
    Teo E Y H, Zhang C F, Lim S L, et al. An organic-based diode-memory device with rectifying property for crossbar memory array applications. IEEE Electron Device Lett, 2009, 30: 487–489CrossRefGoogle Scholar
  73. 73.
    Cho B, Kim T W, Song S, et al. Rewritable switching of one diodeone resistor nonvolatile organic memory devices. Adv Mater, 2010, 22: 1228–1232CrossRefGoogle Scholar
  74. 74.
    Lai S. Flash memories: Where we were and where we are going. IEEE Inter Electron Devices Meeting Tech Dig, 1998, 971-973Google Scholar
  75. 75.
    Eitan B, Kazerounian R, Roy A, et al. Multilevel flash cells and their trade-offs. IEEE Inter Electron Devices Meeting Tech Dig, 1996, 169-172Google Scholar
  76. 76.
    Majumdar H S, Baral J K, Österbacka R, et al. Fullerene-based bistable devices and associated negative differential resistance effect. Org Electron, 2005, 6: 188–192CrossRefGoogle Scholar
  77. 77.
    Lauters M, McCarthy B, Sarid D, et al. Multilevel conductance switching in polymer films. Appl Phys Lett, 2006, 89: 013507CrossRefGoogle Scholar
  78. 78.
    Park J G, Nam W S, Seo S H, et al. Multilevel nonvolatile small-molecule memory cell embedded with Ni nanocrystals surrounded by a NiO tunneling barrier. Nano Lett, 2009, 9: 1713–1719CrossRefGoogle Scholar
  79. 79.
    Reddy V S, Karak S, Dhar A. Multilevel conductance switching in organic memory devices based on AlQ3 and Al/Al2O3 core-shell nanoparticles. Appl Phys Lett, 2009, 94: 173304CrossRefGoogle Scholar
  80. 80.
    Yang G W, Chen H Y, Ma L P, et al. Study of multi-ON states in nonvolatile memory based on metal-insulator-metal structure. Appl Phys Lett, 2009, 95: 203506CrossRefGoogle Scholar
  81. 81.
    Rath A K, Pal A J. To induce negative differential resistance in organic devices through a ferroelectric polymer. Org Electron, 2009, 10: 1116–1119CrossRefGoogle Scholar
  82. 82.
    Xie X N, Gao X Y, Wang Y Z, et al. Negative differential resistance based on electron injection/extraction in conducting organic films. Appl Phys Lett, 2009, 95: 063301CrossRefGoogle Scholar
  83. 83.
    Lauters M, McCarthy B, Sarid D, et al. Nonvolatile multilevel conductance and memory effects in organic thin films. Appl Phys Lett, 2005, 87: 231105CrossRefGoogle Scholar
  84. 84.
    Bandyopadhyay A, Pal A J. Multilevel conductivity and conductance switching in supramolecular structures of an organic molecule. Appl Phys Lett, 2004, 84: 999–1001CrossRefGoogle Scholar
  85. 85.
    Das B C, Pal A J. Switching between different conformers of a molecule: Multilevel memory elements. Org Electron, 2008, 9: 39–44CrossRefGoogle Scholar
  86. 86.
    Chen J S, Xu L L, Lin J, et al. Negative differential resistance and multilevel memory effects in organic devices. Semicond Sci Technol, 2006, 21: 1121–1124CrossRefGoogle Scholar
  87. 87.
    Auciello O, Scott J F, Ramesh R. The physics of ferroelectric memories. Phys Today, 1998, 51: 22–27CrossRefGoogle Scholar
  88. 88.
    Tsumura A, Koezuka H, Ando T. Macromolecular electronic device: Field-effect transistor with a polythiophene thin film. Appl Phys Lett, 1986, 49: 1210–1212CrossRefGoogle Scholar
  89. 89.
    Unni K N N, Bettignies R, Dabos-Seignon S, et al. A nonvolatile memory element based on an organic field-effect transistor. Appl Phys Lett, 2004, 85: 1823–1825CrossRefGoogle Scholar
  90. 90.
    Naber R C G, Boer B, Blom P W M, et al. Low-voltage polymer field-effect transistors for nonvolatile memories. Appl Phys Lett, 2005, 87: 203509CrossRefGoogle Scholar
  91. 91.
    Stadlober B, Zirkl M, Beutl M, et al. High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric. Appl Phys Lett, 2005, 86: 242902CrossRefGoogle Scholar
  92. 92.
    Yildirim F A, Ucurum C, Schliewe R R, et al. Spin-cast composite gate insulation for low driving voltages and memory effect in organic field-effect transistors. Appl Phys Lett, 2007, 90: 083501CrossRefGoogle Scholar
  93. 93.
    Schroeder R, Majewski L A, Grell M. All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator. Adv Mater, 2004, 16: 633–636CrossRefGoogle Scholar
  94. 94.
    Singh T B, Marjanovic N, Matt G J, et al. Nonvolatile organic fieldeffect transistor memory element with a polymeric gate electret. Appl Phys Lett, 2004, 85: 5409–5411CrossRefGoogle Scholar
  95. 95.
    Baeg K J, Noh Y Y, Ghim J, et al. Organic non-volatile memory based on pentacene field-effect transistors using a polymeric gate electret. Adv Mater, 2006, 18: 3179–3183CrossRefGoogle Scholar
  96. 96.
    Liu Z, Xue F, Su Y, et al. Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric. IEEE Trans Nanotechnol, 2006, 5: 379–384CrossRefGoogle Scholar
  97. 97.
    Zhen L, Guan W, Shang L, et al. Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric. Appl Phys, 2008, 41: 135111Google Scholar
  98. 98.
    Kim S J, Park Y S, Lyu S H, et al. Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers. Appl Phys Lett, 2010, 96: 033302CrossRefGoogle Scholar
  99. 99.
    Clemens W. Low cost RFID tags based on printed Electronics. MikroSystemTechnik KONGRESS, 2007Google Scholar
  100. 100.
    Guo Y L, Di C A, Ye S H, et al. Multibit storage of organic thin-film field-effect transistors. Adv Mater, 2009, 21: 1954–1959CrossRefGoogle Scholar
  101. 101.
    Ma L P, Pyo S, Ouyang J Y, et al. Nonvolatile electrical bistability of organic/metal-nanocluster/organic system. Appl Phys Lett, 2003, 82: 1419–1421CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Xin Liu
    • 1
    • 2
  • ZhuoYu Ji
    • 1
  • Ming Liu
    • 1
  • LiWei Shang
    • 1
  • DongMei Li
    • 1
  • YueHua Dai
    • 2
  1. 1.Laboratory of Nanofabrication and Novel Device Integration, Institute of MicroelectronicsChinese Academy of SciencesBeijingChina
  2. 2.School of Electronic and Information EngineeringAnhui UniversityHefeiChina

Personalised recommendations