Chinese Science Bulletin

, Volume 56, Issue 22, pp 2312–2319

Near-field radiative heat transfer between general materials and metamaterials

Open Access
Article Calorifics

Abstract

We investigated the near-field radiative heat transfer between general materials and metamaterials. We studied the effects of metamaterial parameters on the radiative heat exchange and used three kinds of natural or artificially-constructed materials such as Al, boron-doped Si and metamaterials as examples. We calculated and analyzed the near-field radiative heat transfer processes between two semi-infinite bodies. The numerical results indicate that the radiative heat exchange between the two different materials may be less or more than the radiative heat exchange between the corresponding identical materials. It was found out to depend on the radiative properties of the materials. The work would provide a valuable reference for the selection of practical materials.

Keywords

near-field effect near-field radiative heat transfer material assembly metamaterial 

References

  1. 1.
    Chowdhury I, Prasher R, Lofgreen K, et al. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat Nanotechnol, 2009, 4: 235–238CrossRefGoogle Scholar
  2. 2.
    Schwede J W, Bargatin I, Riley D C, et al. Photon-enhanced thermionic emission for solar concentrator systems. Nat Mater, 2010, 9: 762–767CrossRefGoogle Scholar
  3. 3.
    Basu S, Chen Y B, Zhang Z M. Microscale radiation in thermophotovoltaic devices—A review. Int J Energy Res, 2007, 31: 689–716CrossRefGoogle Scholar
  4. 4.
    Schubert E F. Light-emitting Diodes. 2nd ed. Cambridge: Cambridge University Press, 2006CrossRefGoogle Scholar
  5. 5.
    Shakouri A. Nanoscale thermal transport and microrefrigerators on a chip. Proc IEEE, 2006, 94: 1613–1638CrossRefGoogle Scholar
  6. 6.
    Pendry J B. Radiative exchange of heat between nanostructures. J Phys: Condens Matter, 1999, 11: 6621–6633CrossRefGoogle Scholar
  7. 7.
    Joulain K, Mulet J-P, Marquier F, et al. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf Sci Rep, 2005, 57: 59–112CrossRefGoogle Scholar
  8. 8.
    Basu S, Zhang Z M. Maximum energy transfer in near-field thermal radiation at nanometer distances. J Appl Phys, 2009, 105: 093535CrossRefGoogle Scholar
  9. 9.
    Francoeur M, Menguc M P, Vaillon R. Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method. J Quant Spectrosc Radiat Transfer, 2009, 110: 2002–2018CrossRefGoogle Scholar
  10. 10.
    Narayanaswamy A, Chen G. Direct computation of thermal emission from nanostructures. Ann Rev Heat Transfer, 2005, 14: 169–195Google Scholar
  11. 11.
    Volokitin A, Persson B N J. Near-field radiative heat transfer and noncontact friction. Rev Mod Phys, 2007, 79: 1291–1329CrossRefGoogle Scholar
  12. 12.
    Wang X J, Basu S, Zhang Z M. Parametric optimization of dielectric functions for maximizing nanoscale radiative transfer. J Phys D: Appl Phys, 2009, 43: 245403CrossRefGoogle Scholar
  13. 13.
    Basu S, Zhang Z M, Fu C J. Review of near-field thermal radiation and its application to energy conversion. Int J Energy Res, 2009, 33: 1203–1232CrossRefGoogle Scholar
  14. 14.
    Fu C J, Tan W C. Near-field radiative heat transfer between two plane surfaces with one having a dielectric coating. J Quant Spectrosc Radiat Transfer, 2009, 110: 1027–1036CrossRefGoogle Scholar
  15. 15.
    Mulet J-P, Joulian K, Carminati R, et al. Enhanced radiative heat transfer at nanometric distances. Microscale Thermophys Eng, 2002, 6: 209–222CrossRefGoogle Scholar
  16. 16.
    Polder D, Van Hove M. Theory of radiative heat transfer between closely spaced bodies. Phys Rev B, 1971, 4: 3303–3314CrossRefGoogle Scholar
  17. 17.
    Shuai Y, Che Z Z, Zhang H C, et al. Monochromatic effect and polarization in near thermal field radiation of surfaces. J Eng Thermophys, 2008, 29: 1002–1004Google Scholar
  18. 18.
    Han M H, Liang X G. Study on near-field radiative heat transfer of spherical particles. J Eng Thermophys, 2007, 28: 107–109Google Scholar
  19. 19.
    Joulain K, Drevillon J, Ben-Abdallah P. Noncontact heat transfer between two metamaterials. Phys Rev B, 2010, 81: 165119CrossRefGoogle Scholar
  20. 20.
    Fu C J, Zhang Z M. Nanoscale radiation heat transfer for silicon at different doping levels. Int J Heat Mass Transfer, 2006, 49: 1703–1718CrossRefGoogle Scholar
  21. 21.
    Biehs S-A, Reddig D, Holthaus M. Thermal radiation and near-field energy density of thin metallic films. Eur Phys J B, 2007, 55: 237–251CrossRefGoogle Scholar
  22. 22.
    Loomis J J, Maris H J. Theory of heat transfer by evanescent electromagnetic waves. Phys Rev B, 1994, 50: 18517–18524CrossRefGoogle Scholar
  23. 23.
    Rytov S M, Kravtsov Yu A, Tatarskii V I. Principles of Statistical Radiophysics. New York: Springer-Verlag, 1987Google Scholar
  24. 24.
    Zheng Z H, Xuan Y M. Theory of near-field radiative heat transfer for stratified magnetic media. Int J Heat Mass Transfer, 2011, 54: 1101–1110CrossRefGoogle Scholar
  25. 25.
    Skaar J. Fresnel equations and the refractive index of active media. Phys Rev E, 2006, 73: 026605CrossRefGoogle Scholar
  26. 26.
    Fu C J, Zhang Z M. Thermal radiative properties of metamaterials and other nanostructured materials: A review. Front Energy Power Eng China, 2009, 3: 11–26CrossRefGoogle Scholar
  27. 27.
    Sipe J E. New Green-function formalism for surface optics. J Opt Soc Am B, 1987, 4: 481–489CrossRefGoogle Scholar
  28. 28.
    Cheng X C, Fu Q H, Zhao X P. Spatial separation of spectrum inside the trapered metamaterial optical waveguide. Chinese Sci Bull, 2011, 56: 209–214CrossRefGoogle Scholar
  29. 29.
    Chakrabarti S, Ramakrishna S A, Wanare H. Coherently controlling metamaterials. Opt Express, 2008, 16: 19504–19511CrossRefGoogle Scholar
  30. 30.
    Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett, 1996, 76: 4773–4776CrossRefGoogle Scholar
  31. 31.
    Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech, 1999, 47: 2075–2084CrossRefGoogle Scholar
  32. 32.
    Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett, 2000, 84: 4184–4187CrossRefGoogle Scholar
  33. 33.
    Fu C J. Radiative properties of emergings materials and radiation heat transfer at the nanoscale. Doctoral Dissertation. Atlanta: Georgia Institute of Technology, 2004Google Scholar
  34. 34.
    Veselago V G. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov Phys Usp, 1968, 10: 509–514CrossRefGoogle Scholar
  35. 35.
    Fu C J, Zhang Z M. Planar heterogeneous structures for coherent emission of radiation. Opt Lett, 2005, 30: 1873–1875CrossRefGoogle Scholar
  36. 36.
    Park K, Lee B J, Fu C J, et al. Study of the surface and bulk polaritons with a negative index metamaterial. J Opt Soc Am B, 2005, 22: 1016–1023CrossRefGoogle Scholar
  37. 37.
    Francoeur M, Menguc M P, Vaillon R. Spectral tunning of near-field radiative heat flux between two thin silicon carbide films. J Phys D: Appl Phys, 2010, 43: 075501CrossRefGoogle Scholar
  38. 38.
    Francoeur M, Menguc M P, Vaillon R. Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons. J Phys D: Appl Phys, 2010, 107: 034313Google Scholar
  39. 39.
    Francoeur M, Menguc M P. Role of fluctuational electrodynamics in near-field radiative heat transfer. J Quant Spectrosc Radiat Transfer, 2008, 109: 280–293CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations