Chinese Science Bulletin

, Volume 56, Issue 20, pp 2082–2087 | Cite as

Preliminary results of TiO2 mapping using Imaging Interferometer data from Chang’E-1

  • ZongCheng Ling
  • Jiang Zhang
  • JianZhong Liu
  • WenXi Zhang
  • GuangLiang Zhang
  • Bin Liu
  • Xin Ren
  • LingLi Mu
  • JianJun Liu
  • ChunLai Li
Open Access
Article Astronomy


The distribution of titanium abundance on the lunar surface is important knowledge for lunar geologic studies and future resource utilization. In this paper, we develop a preliminary model based on “ground truths” from Apollo and Luna sample-return sites to produce a titanium abundance map from Chang’E-1 Imaging Interferometer (IIM) images. The derived TiO2 abundances are validated with Clementine UVVIS results in several regions, including lunar highlands neighboring the Apollo 16 landing site, and high-Ti and low-Ti maria near the standard site of Mare Serenitatis (MS2). The validation results show that TiO2 abundances modeled with Chang’E-1 IIM data are overestimated for highlands (∼0.7 wt.%) and low-Ti maria (∼1.5 wt.%) and underestimated for high-Ti maria (∼0.8 wt.%).


Chang’E-1 Imaging Interferometer (IIM) TiO2 mapping Clementine UVVIS 


  1. 1.
    Ouyang Z Y, Li C L, Zou Y L, et al. Chang’E-1 lunar mission: An overview and primary science results. Chin J Space Sci, 2010, 30: 392–403Google Scholar
  2. 2.
    Ping J S. Preface: Joint researches are benefiting the Chang’E-1 comprehensive lunar scientific studies which probe ever deeper. Sci China Phys Mech Astron, 2010, 53: 2135–2135CrossRefGoogle Scholar
  3. 3.
    Li C L, Liu J J, Ren X, et al. The global image of the Moon obtained by the Chang’E-1: Data processing and lunar cartography. Sci China Earth Sci, 2010, 53: 1091–1102CrossRefGoogle Scholar
  4. 4.
    Li C L, Ren X, Liu J J, et al. Laser altimetry data of Chang’E-1 and the global lunar DEM model. Sci China Earth Sci, 2010, 53: 1582–1593CrossRefGoogle Scholar
  5. 5.
    Ping J S, Huang Q, Yan J G, et al. Topographic model CLTM-s01 of the Moon based on laser altimetry of CE-1 probe. Sci Chin Ser G-Phys Mech Astron, 2008, 38: 1601–1612Google Scholar
  6. 6.
    Fa W Z, Jin Y Q. Global inventory of Helium-3 in lunar regoliths estimated by a multi-channel microwave radiometer on the Chang-E 1 lunar satellite. Chinese Sci Bull, 2010, 55: 4005–4009CrossRefGoogle Scholar
  7. 7.
    Meng Z G, Chen S B, Edward M O, et al. Research on water ice content in Cabeus crater using the data from the microwave radiometer onboard Chang’E-1 satellite. Sci China Phys Mech Astron, 2010, 53: 2172–2178CrossRefGoogle Scholar
  8. 8.
    Zheng Y C, Ouyang Z Y, Li C L, et al. China’s lunar exploration program: Present and future. Planet Space Sci, 2008, 56: 881–886CrossRefGoogle Scholar
  9. 9.
    Ouyang Z Y, Jiang J S, Li C L, et al. Preliminary scientific results of Chang’E-1 lunar orbiter: based on payloads detection data in the first phase. Chin J Space Sci, 2008, 28: 361–369Google Scholar
  10. 10.
    Sun H X, Wu J, Dai S W, et al. Introduction to the payloads and the initial observation results of Chang’E-1. Chin J Space Sci, 2008, 28: 374–384Google Scholar
  11. 11.
    Ling Z C, Zhang J, Zhang W, et al. Chang’E-1 IIM reflectance conversion. In: Global Lunar Conference, 2010, 5819Google Scholar
  12. 12.
    Ling Z C, Zhang J, Liu J Z, et al. Preliminary results of FeO mapping using imaging interferometer data from Chang’E-1. Chinese Sci Bull, 2011, 56: 376–379CrossRefGoogle Scholar
  13. 13.
    McCord T B, Adams J B. Progress in optical analysis of lunar surface composition. Moon, 1973, 7: 453–474CrossRefGoogle Scholar
  14. 14.
    Nozette S, Rustan P, Pleasance L P, et al. The Clementine mission to the Moon—Scientific overview. Science, 1994, 266: 1835–1839CrossRefGoogle Scholar
  15. 15.
    Matsunaga T, Ohtake M, Haruyama J, et al. Discoveries on the lithology of lunar crater central peaks by SELENE spectral profiler. Geophys Res Lett, 2008, 35: L23201CrossRefGoogle Scholar
  16. 16.
    Pieters C M, Boardman J, Buratti B, et al. The Moon mineralogy mapper (M-3) on Chandrayaan-1. Curr Sci, 2009, 96: 500–505Google Scholar
  17. 17.
    Burns R. Mineralogical Applications of Crystal Field Theory. Cambridge, UK: Cambridge University Press, 1993CrossRefGoogle Scholar
  18. 18.
    Lucey P, Korotev R L, Gillis J J, et al. Understanding the lunar surface and space-Moon interactions. Rev Miner Geochem, 2006, 60: 83–219CrossRefGoogle Scholar
  19. 19.
    Heiken G, Vaniman D T, French B M. Lunar Sourcebook: A User’s Guide to the Moon. Cambridge, UK: Lunar and Planetary Institute and Cambridge University Press, 1991Google Scholar
  20. 20.
    Wu Y Z, Zhang X, Yan B K, et al. Global absorption center map of the mafic minerals on the Moon as viewed by CE-1 IIM data. Sci China Phys Mech Astron, 2010, 53: 2160–2171CrossRefGoogle Scholar
  21. 21.
    Liu F J, Qiao L, Liu Z, et al. Estimation of lunar titanium content: Based on absorption features of Chang’E-1 interference imaging spectrometer (IIM). Sci China Phys Mech Astron, 2010, 53: 2136–2144CrossRefGoogle Scholar
  22. 22.
    McCord T B. Color differences on lunar surface. J Geophys Res, 1969, 74: 3131–3142CrossRefGoogle Scholar
  23. 23.
    Whitaker E. Lunar color boundaries and their relationship to topographic features: A preliminary survey. Earth Moon Planets, 1972, 4: 348–355Google Scholar
  24. 24.
    Charette M P, Mccord T B, Pieters C M, et al. Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. J Geophys Res, 1974, 79: 1605–1613CrossRefGoogle Scholar
  25. 25.
    Johnson J R, Larson S M, Mosher J A. A TiO2 abundance map for the northern maria. In: Proceedings of 8th Lunar Science Conference, 1977, 1029–1036Google Scholar
  26. 26.
    Johnson J R, Larson S M, Singer R B. Remote sensing of potential lunar resources. 1 Near side compositional properties. J Geophys Res, 1991, 96: 18861–18882CrossRefGoogle Scholar
  27. 27.
    Pieters C M. Mare basalt types on the front side of the Moon: A summary of spectral reflectance data. In: Proceedings of 9th Lunar Planet Science Conference, 1978, 2825–2849Google Scholar
  28. 28.
    Melendrez D E, Johnson J R, Larson S M, et al. Remote sensing of potential lunar resources. 2 High spatial resolution mapping of spectral reflectance ratios and implications for near side mare TiO2 content. J Geophys Res, 1994, 99: 5601–5619CrossRefGoogle Scholar
  29. 29.
    Blewett D T, Lucey P G, Hawke B R, et al. Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. J Geophys Res, 1997, 102: 16319–16325CrossRefGoogle Scholar
  30. 30.
    Lucey P G, Blewett D T, Hawke B R. Mapping the FeO and TiO2 content of the lunar surface multispectral imagery. J Geophys Res, 1998, 103: 3679–3699CrossRefGoogle Scholar
  31. 31.
    Jolliff B L. Clementine UVVIS multispectral data and the Apollo 17 landing site: What can we tell and how well? J Geophys Res, 1999, 104: 14123–14148CrossRefGoogle Scholar
  32. 32.
    Lucey P G, Blewett D T, Jolliff B L. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J Geophys Res, 2000, 105: 20297–20305CrossRefGoogle Scholar
  33. 33.
    Gillis J J, Jolliff B L. A revised algorithm for calculating TiO2 from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiO2 concentrations. J Geophys Res, 2003, 108: 5009CrossRefGoogle Scholar
  34. 34.
    Gillis J J, Lucey P G, Hawke B R. Testing the relation between UV-vis color and TiO2 content of the lunar maria. Geochim Cosmochim Acta, 2006, 70: 6079–6102CrossRefGoogle Scholar
  35. 35.
    Adams J B, McCord T B. Optical properties of mineral separates, glass, and anorthositic fragments from Apollo mare samples. In: Proceedings of 2nd Lunar Planet Science Conference, 1971, 2183–2195Google Scholar
  36. 36.
    Ling Z C, Wang A, Jolliff B L. Mineralogy and geochemistry of four lunar soils by laser-Raman study. Icarus, 2011, 211: 101–113CrossRefGoogle Scholar
  37. 37.
    Pieters C M, Head J W, Isaacson P, et al. Lunar international science coordination/calibration targets (L-ISCT). Adv Space Res, 2008, 42: 248–258CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • ZongCheng Ling
    • 1
    • 2
  • Jiang Zhang
    • 1
    • 2
  • JianZhong Liu
    • 1
  • WenXi Zhang
    • 3
  • GuangLiang Zhang
    • 1
  • Bin Liu
    • 1
  • Xin Ren
    • 1
  • LingLi Mu
    • 1
  • JianJun Liu
    • 1
  • ChunLai Li
    • 1
  1. 1.National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina
  2. 2.School of Space Science and Physics & Shandong Provincial Key Laboratory of Optical Astronomy & Solar-Terrestrial EnvironmentShandong University at WeihaiWeihaiChina
  3. 3.Academy of Opto-ElectronicsChinese Academy of SciencesBeijingChina

Personalised recommendations