Chinese Science Bulletin

, Volume 56, Issue 20, pp 2119–2130

Profiling of the transcriptome of Porphyra yezoensis with Solexa sequencing technology

  • Hui Yang
  • YunXiang Mao
  • FanNa Kong
  • GuanPin Yang
  • Fei Ma
  • Li Wang
Open Access
Article Marine Biology

Abstract

With high-throughput Solexa sequencing technology, we profiled Porphyra yezoensis transcriptomes from 8 different samples. More than 1200 megabases from 13333334 quality paired-end reads were generated, which were assembled into 31538 unigenes. Blast analysis showed that 56.7% unigenes were novel, which represented the specific genes of Porphyra and/or rhodophytes. Several hundreds of unigenes related to stress tolerance were discovered, including genes related to desiccation-(211) and high light-tolerance (31), flavonoid biosynthesis (10), reactive oxygen scavenging (48) and other stress-tolerance processes (208), which indicated there existed complex and diversity modes of stress tolerance in this species. A complete set of essential genes involved in the C3-(57) and C4-(44) carbon fixation pathway (except pyruvate phosphate dikinase) were discovered, which not only proved that they were actively transcribed but also clearly outlined the panoptic view of carbon fixation in Porphyra. Moreover, by statistically analyzing the types, proportions and frequencies of the interspersed repeats (TEs) and simple sequence repeats (SSRs), we discovered that the top three types of TEs were all retrotransposons and the trinucleotide was the absolute predominant type among SSRs, promoting our understanding of structural characteristics of the transcriptome. This study substantially improved the global view of the Porphyra genome and provided a valuable resource for future research.

Keywords

Porphyra yezoensis red algae transcriptome Solexa sequencing technology expressed sequence tags functional analysis transposable elements microsatellites 

References

  1. 1.
    Mumford T F, Miura A. Porphyra as food: Cultivation and economics. In: Lemby C A, Walland J R, eds. Algae and Human Affairs. Cambridge: Cambridge University Press, 1988. 87–117Google Scholar
  2. 2.
    Kuwano K, Aruga Y, Saga N. Cryopreservation and clonal gametophytic thalli of Porphyra (Rhodophyta). Plant Sci, 1996, 116: 117–124CrossRefGoogle Scholar
  3. 3.
    Sahoo D, Tang X R, Yarish C. Porphyra-the economic seaweed as a new experimental system. Curr Sci India, 2002, 83: 1313–1316Google Scholar
  4. 4.
    Le Gall Y, Brown S, Marie D, et al. Quantification of nuclear DNA and GC content in marine macroalgae by flow cytometry of isolated nuclei. Protoplasma, 1993, 173: 123–132CrossRefGoogle Scholar
  5. 5.
    Davison I R, Pearson G A. Stress tolerance in intertidal seaweeds. J Phycol, 1996, 32: 197–211CrossRefGoogle Scholar
  6. 6.
    Guo S, Zheng Y, Joung J G, et al. Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics, 2010, 11: 384CrossRefGoogle Scholar
  7. 7.
    Nikaido I, Asamizu E, Nakajima M, et al. Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res, 2000, 7: 223–227CrossRefGoogle Scholar
  8. 8.
    Asamizu E, Nakajima M, Kitade Y, et al. Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. J Phycol, 2003, 39: 923–930CrossRefGoogle Scholar
  9. 9.
    Xu M J, Mao Y X, Zhang X C, et al. Bioinformatic analysis of expressed sequence tags from sporophyte of Porphyra yezoensis (Bagiaceae, Rhodophyta). Prog Nat Sci, 2006, 16: 39–49CrossRefGoogle Scholar
  10. 10.
    Morozova O, Hirst M, Marra M A. Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genom Hum G, 2009, 10: 135–151CrossRefGoogle Scholar
  11. 11.
    Mu Y, Ding F, Cui P, et al. Transcriptome and expression profiling analysis revealed changes of multiple signaling pathways involved in the large yellow croaker during Aeromonas hydrophila infection. BMC Genomics, 2010, 11: 506CrossRefGoogle Scholar
  12. 12.
    Hegedűs Z, Zakrzewska A, Agoston V C, et al. Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Mol Immunol, 2009, 46: 2918–2930CrossRefGoogle Scholar
  13. 13.
    Wang B, Guo G, Wang C, et al. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Res, 2010, 15: 5075–5087CrossRefGoogle Scholar
  14. 14.
    Zhang G, Guo G, Hu X, et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res, 2010, 20: 646–654CrossRefGoogle Scholar
  15. 15.
    Rosenkranz R, Borodina T, Lehrach H, et al. Characterizing the mouse ES cell transcriptome with Illumina sequencing. Genomics, 2008, 92: 187–194CrossRefGoogle Scholar
  16. 16.
    Montgomery S B, Sammeth M, Gutierrez-Arcelus M, et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature, 2010, 464: 773–777CrossRefGoogle Scholar
  17. 17.
    Morozova O, Marra M A. Applications of next-generation sequencing technologies in functional genomics. Genomics, 2008, 92: 255–264CrossRefGoogle Scholar
  18. 18.
    Li R, Zhu H, Ruan J, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res, 2010, 20: 265–272CrossRefGoogle Scholar
  19. 19.
    Conesa A, Götz S, García-Gómez J M, et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21: 3674–3676CrossRefGoogle Scholar
  20. 20.
    Ye J, Fang L, Zheng H, et al. WEGO: A web tool for plotting GO annotations. Nucleic Acids Res, 2006, 34: W293–297CrossRefGoogle Scholar
  21. 21.
    Iseli C, Jongeneel C V, Bucher P. ESTScan: A program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol, 1999, 7: 138–148Google Scholar
  22. 22.
    Altschul S F, Madden T L, Schäffer A A, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389–3402CrossRefGoogle Scholar
  23. 23.
    Thiel T, Michalek W, Varshney R K, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 106: 411–422Google Scholar
  24. 24.
    Cardle L, Ramsay L, Milbourne D, et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 2000, 156: 847–854Google Scholar
  25. 25.
    Wang C B, Guo W Z, Cai C P, et al. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chinese Sci Bull, 2006, 51: 557–561CrossRefGoogle Scholar
  26. 26.
    Teich R, Zauner S, Baurain D, et al. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: A single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Protist, 2006, 158: 263–276CrossRefGoogle Scholar
  27. 27.
    Kitade Y, Asamizu E, Fukuda S, et al. Identification of genes preferentially expressed during asexual sporulation in Porphyra yezoensis gametophytes (Bangiales, Rhodophyta). J Phycol, 2008, 44: 113–123CrossRefGoogle Scholar
  28. 28.
    Derelle E, Ferraz C, Rombauts S, et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA, 2006, 103: 11647–11652CrossRefGoogle Scholar
  29. 29.
    Fan X L, Fang Y J, Hu S N, et al. Generation and analysis of 5,318 expressed sequence tags from the filamentous sporophyte of Porphyra haitanensis (Phodophyta). J Phycol, 2007, 43: 1287–1294CrossRefGoogle Scholar
  30. 30.
    Blouin N A, Brodie J A, Grossman A C, et al. Porphyra: A marine crop shaped by stress. Trends Plant Sci, 2011, 16: 29–37CrossRefGoogle Scholar
  31. 31.
    Gao K S, Ji Y, Aruga Y, et al. Relationship of CO2 concentrations to photosynthesis of intertidal macroalgae during emersion. Hydrobiologia, 1999, 398/399: 355–359CrossRefGoogle Scholar
  32. 32.
    Herbert S K. Photoinhibition resistance in the red alga Porphyra perforata: The role of photoinhibition repair. Plant Physiol, 1990, 92: 514–519CrossRefGoogle Scholar
  33. 33.
    Collén J, Davison I R. Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus. Plant Cell Environ, 1999, 22: 1143–1151CrossRefGoogle Scholar
  34. 34.
    Wolfe-Simon F, Grzebyk D, Schofield O, et al. The role and evolution of superoxide dismutases in algae. J Phycol, 2005, 41: 453–465CrossRefGoogle Scholar
  35. 35.
    Korbee N, Huovinen P, Figueroa F L, et al. Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar Biol, 2005, 146: 645–654CrossRefGoogle Scholar
  36. 36.
    Singh S P, Klisch M, Sinha R P, et al. Genome mining of mycosporine-like amino acid (MAA) synthesizing and non-synthesizing cyanobacteria: A bioinformatics study. Genomics, 2010, 95: 120–128CrossRefGoogle Scholar
  37. 37.
    Rozema J, Björn L O, Bornman J F, et al. The role of UV-B radiation in aquatic and terrestrial ecosystems-an experimental and functional analysis of the evolution of UV-absorbing compounds. J Photochem Photobiol B, 2002, 66: 2–12CrossRefGoogle Scholar
  38. 38.
    Cock J M, Sterck L, Rouze P, et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465: 617–621CrossRefGoogle Scholar
  39. 39.
    Dittami S M, Michel G, Collén J, et al. Chlorophyll-binding proteins revisited—amultigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol Biol, 2010, 10: 365CrossRefGoogle Scholar
  40. 40.
    Llorca O, Martín-Benito J, Ritco-Vonsovici M, et al. Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. EMBO J, 2000, 19: 5971–5979CrossRefGoogle Scholar
  41. 41.
    Oliver M J, Dowd S E, Zaragoza J, et al. The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: Transcript classification and analysis. BMC Genomics, 2004, 5: 89CrossRefGoogle Scholar
  42. 42.
    Bartels D. Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr Comp Biol, 2005, 45: 696–701CrossRefGoogle Scholar
  43. 43.
    Bennetzen J L. Transposable element contributions to plant gene and genome evolution. Plant Mol Biol, 2000, 42: 251–269CrossRefGoogle Scholar
  44. 44.
    Nigumann P, Redik K, Mätlik K, et al. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics, 2002, 79: 628–634CrossRefGoogle Scholar
  45. 45.
    Miyao A, Tanaka K, Murata K, et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon rich regions of the genome. Plant Cell, 2003, 15: 1771–1780CrossRefGoogle Scholar
  46. 46.
    Le Q, Melayah D, Bonnivard E, et al. Distribution dynamics of the Tnt1 retrotransposon in tobacco. Mol Genet Genomics, 2007, 278: 639–651CrossRefGoogle Scholar
  47. 47.
    Sin H S, Huh J W, Kim D S, et al. Transcriptional control of the HERV-HLTR element of the GSDML gene in human tissues and cancer cells. Arch Virol, 2006, 151: 1985–1994CrossRefGoogle Scholar
  48. 48.
    Faulkner G J, Kimura Y, Daub C O, et al. The regulated retrotransposon transcriptome of mammalian cells. Nat Genet, 2009, 41: 563–571CrossRefGoogle Scholar
  49. 49.
    Gupta P K, Rustgi S. Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomic, 2004, 4: 139–162Google Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Hui Yang
    • 1
  • YunXiang Mao
    • 1
  • FanNa Kong
    • 1
  • GuanPin Yang
    • 1
  • Fei Ma
    • 1
  • Li Wang
    • 1
  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoChina

Personalised recommendations