Chinese Science Bulletin

, 56:1639 | Cite as

A review of TiO2 nanoparticles

Open Access
Review Physical Chemistry

Abstract

Climate change and the consumption of non-renewable resources are considered as the greatest problems facing humankind. Because of this, photocatalysis research has been rapidly expanding. TiO2 nanoparticles have been extensively investigated for photocatalytic applications including the decomposition of organic compounds and production of H2 as a fuel using solar energy. This article reviews the structure and electronic properties of TiO2, compares TiO2 with other common semiconductors used for photocatalytic applications and clarifies the advantages of using TiO2 nanoparticles. TiO2 is considered close to an ideal semiconductor for photocatalysis but possesses certain limitations such as poor absorption of visible radiation and rapid recombination of photogenerated electron/hole pairs. In this review article, various methods used to enhance the photocatalytic characteristics of TiO2 including dye sensitization, doping, coupling and capping are discussed. Environmental and energy applications of TiO2, including photocatalytic treatment of wastewater, pesticide degradation and water splitting to produce hydrogen have been summarized.

Keywords

nanoparticles photocatalyst TiO2 dye sensitization doping coupling capping 

References

  1. 1.
    Kato S, Masuo F. Titanium dioxide-photocatalyzed oxidation. I. Titanium dioxide-photocatalyzed liquid phase oxidation of tetralin. Kogyo Kagaku Zasshi, 1964, 67: 42–50Google Scholar
  2. 2.
    McLintock S, Ritchie M. Reactions on titanium dioxide; photoadsorption and oxidation of ethylene and propylene. Trans Faraday Soc, 1965, 61: 1007–1016CrossRefGoogle Scholar
  3. 3.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  4. 4.
    Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J Am Chem Soc, 1977, 99: 303–304CrossRefGoogle Scholar
  5. 5.
    Schrauzer G N, Guth T D. Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J Am Chem Soc, 1977, 99: 7189–7193CrossRefGoogle Scholar
  6. 6.
    Schrauzer G N, Strampach N, Hui L N. Nitrogen photoreduction on desert sands under sterile conditions. Proc Natl Acad Sci USA, 1983, 80: 3873–3876CrossRefGoogle Scholar
  7. 7.
    Kreutler B, Bard A J. Heterogenous photocatalytic preparation of supported catalyst. Photodeposition of platinum on titanium dioxide powder and other substrates. J Am Chem Soc, 1978, 100: 4317–4318CrossRefGoogle Scholar
  8. 8.
    Hsiao C Y, Lee C L, Ollis D F. Heterogenous photocatalysis: Degradation of dilute solution of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CCl4) with illuminated TiO2 photocatalyst. J Catal, 1983, 82: 418–423CrossRefGoogle Scholar
  9. 9.
    Matsunaga T, Tomato R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett, 1985, 29: 211–214CrossRefGoogle Scholar
  10. 10.
    Fujishima A, Ohtsuki J, Yamashita T, et al. Behavior of tumor cells on photoexcited semiconductor surface. Photomed Photobiol, 1986, 8: 45–46Google Scholar
  11. 11.
    Regan O, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film. Nature, 1991, 353: 737–740CrossRefGoogle Scholar
  12. 12.
    Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev, 2000, 1: 1–21CrossRefGoogle Scholar
  13. 13.
    Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces. Nature, 1997, 388: 431–432CrossRefGoogle Scholar
  14. 14.
    Watson S, Beydoun D, Amal R. Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. J Photochem Photobiol A Chemistry, 2002, 148: 303–311CrossRefGoogle Scholar
  15. 15.
    Sonawane R S, Kale B B, Dongare M K. Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol-gel dip coating. Mater Chem Phys, 2004, 85: 52–57CrossRefGoogle Scholar
  16. 16.
    Sreethawong T, Suzuki Y, Yoshikawa S. Synthesis, characterization, and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol-gel process. J Solid State Chem, 2005, 178: 329–338CrossRefGoogle Scholar
  17. 17.
    Diamandescu L, Vasiliu F, Tarabasanu-Mihaila D, et al. Structural and photocatalytic properties of iron- and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions. Mater Chem Phys, 2008, 112: 146–153CrossRefGoogle Scholar
  18. 18.
    Lai T Y, Lee W C. Killing of cancer cell line by photoexcitation of folic acid-modified titanium dioxidenanoparticles. J Photochem Photobiol A Chem, 2009, 204: 148–153CrossRefGoogle Scholar
  19. 19.
    Mizukoshi Y, Ohtsu N, Semboshi S, et al. Visible light responses of sulfur-doped rutile titanium dioxide photocatalysts fabricated by anodic oxidation. App Cat B Environ, 2009, 91: 152–156CrossRefGoogle Scholar
  20. 20.
    Wang C, Ao Y, Wang P, et al. A facile method for the preparation of titania-coated magnetic porous silica and its photocatalytic activity under UV or visible light. Colloid Surf A: Physicochem Eng Aspects, 2010, 360: 184–189CrossRefGoogle Scholar
  21. 21.
    Kaewgun S, Lee B I. Deactivation and regeneration of visible light active brookite titania in photocatalytic degradation of organic dye. J Photochem Photobiol A: Chem, 2010, 210: 162–167CrossRefGoogle Scholar
  22. 22.
    Rocha O R, Dantas R F, Duarte M M M B, et al. Oil sludge treatment by photocatalysis applying black and white light. Chem Eng J, 2010, 157: 80–85CrossRefGoogle Scholar
  23. 23.
    Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide. Prog in Solid State Chem, 2004, 32: 33–117CrossRefGoogle Scholar
  24. 24.
    Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energ Mater Solar Cell, 2006, 90: 2011–2075CrossRefGoogle Scholar
  25. 25.
    Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev, 2007, 107: 2891–2959CrossRefGoogle Scholar
  26. 26.
    Thompson T L, Yates Jr J T. Surface science studies of the photoactivation of TiO2-New photochemical processes. Chem Rev, 2006, 106: 4428–4453CrossRefGoogle Scholar
  27. 27.
    Diebold U. The surface science of titanium dioxide. Sur Sci Rep, 2003, 48: 53–229CrossRefGoogle Scholar
  28. 28.
    Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem Rev, 1995, 95: 735–758CrossRefGoogle Scholar
  29. 29.
    Simons P Y, Dachille F. The structure of TiO2 II, a high-pressure phase of TiO2. Acta Cryst, 1967, 23: 334–336CrossRefGoogle Scholar
  30. 30.
    Latroche M, Brohan L, Marchand R, et al. New hollandite oxides: TiO2(H) and K0.06TiO2. J Solid State Chem, 1989, 81: 78–82CrossRefGoogle Scholar
  31. 31.
    Cromer D T, Herrington K. The structures of anatase and rutile. J Am Chem Soc, 1955, 77: 4708–4709CrossRefGoogle Scholar
  32. 32.
    Baur V W H. Atomabstände und bindungswinkel im brookit, TiO2. Acta Crystallogr, 1961, 14: 214–216CrossRefGoogle Scholar
  33. 33.
    Mo S, Ching W. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase and brookite. Phys Rev B, 1995, 51: 13023–13032CrossRefGoogle Scholar
  34. 34.
    Norotsky A, Jamieson J C, Kleppa O J. Enthalpy of transformation of a high pressure polymorph of titanium dioxide to the rutile modification. Science, 1967, 158: 338–389Google Scholar
  35. 35.
    Zhang Q, Gao L, Guo J. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl Catal B Environ, 2000, 26: 207–215CrossRefGoogle Scholar
  36. 36.
    Sclafani A, Palmisano L, Schiavello M. Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. J Phys Chem, 1990, 94: 829–832CrossRefGoogle Scholar
  37. 37.
    Muscat J, Swamy V, Harrison N M. First-principles calculations of the phase stability of TiO2. Phy Rev B, 2002, 65: 1–15Google Scholar
  38. 38.
    Tanaka K, Capule M F V, Hisanaga T. Effect of crystallinity of TiO2 on its photocatalytic action. Chem Phys Lett, 1991, 187: 73–76CrossRefGoogle Scholar
  39. 39.
    Selloni A. Anatase shows its reactive side. Nature Mater, 2008, 7: 613–615CrossRefGoogle Scholar
  40. 40.
    Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453: 638–641CrossRefGoogle Scholar
  41. 41.
    Wunderlich W, Oekermann T, Miao L, et al. Electronic properties of nano-porous TiO2-and ZnO-thin films-comparison of simulations and experiments. J Ceram Process Res, 2004, 5: 343–354Google Scholar
  42. 42.
    Paxton A T, Thiên-Nga L. Electronic structure of reduced titanium dioxide. Phys Rev B, 1998, 57: 1579–1584CrossRefGoogle Scholar
  43. 43.
    Banerjee S, Gopal J, Muraleedharan P, et al. Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy. Current Sci, 2006, 90: 1378–1383Google Scholar
  44. 44.
    Li G, Chen L, Graham M E, et al. A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: The importance of the solid-solid interface. J Mol Catal A Chem, 2007, 275: 30–35CrossRefGoogle Scholar
  45. 45.
    You X, Chen F, Zhang J. Effects of calcination on the physical and photocatalytic properties of TiO2 powders prepared by sol-gel template method. J Sol-Gel Sci Tech, 2005, 34: 181–187CrossRefGoogle Scholar
  46. 46.
    Hu Y, Tsai H L, Huang C L. Phase transformation of precipitated TiO2 nanoparticles. Mater Sci Eng A, 2003, 344: 209–214CrossRefGoogle Scholar
  47. 47.
    Wang J, Li R H, Zhang Z H, et al. Heat treatment of nanometer anatase powder and its photocatalytic activity for degradation of acid red B dye under visible light irradiation. Inorg Mater, 2008, 44: 608–614CrossRefGoogle Scholar
  48. 48.
    Ohtani B, Ogawa Y, Nishimoto S. Photocatalytic activity of amorphous-anatase mixture of Titanium(IV) oxide particles suspended in aqueous solutions. J Phys Chem B, 1993, 101: 3746–3752CrossRefGoogle Scholar
  49. 49.
    Yu J, Zhao X, Zhao Q. Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method. Mater Chem Phys, 2001, 69: 25–29CrossRefGoogle Scholar
  50. 50.
    Han H, Ba R. Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Ind Eng Chem Res, 2009, 48: 2891–2898CrossRefGoogle Scholar
  51. 51.
    Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95: 69–96CrossRefGoogle Scholar
  52. 52.
    Marcus R A. Reorganization free energy for electron transfers at liquid-liquid and dielectric semiconductor-liquid interfaces. J Phys Chem, 1990, 94: 1050–1055CrossRefGoogle Scholar
  53. 53.
    Mills A, Hunte A J. An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem, 1997, 108: 1–35CrossRefGoogle Scholar
  54. 54.
    Dawson G, Chen W, Zhang T, et al. A study on the effect of starting material phase on the production of trititanate nanotubes. Solid State Sci, 2010, 12: 2170–2176CrossRefGoogle Scholar
  55. 55.
    Yana J, Fenga S, Lua H, et al. Alcohol induced liquid-phase synthesis of rutile titania nanotubes. Mat Sci Eng B, 2010, 172: 114–120CrossRefGoogle Scholar
  56. 56.
    Mozia S. Application of temperature modified titanate nanotubes for removal of an azo dye from water in a hybrid photocatalysis-MD process. Catalysis Today, 2010, 156: 198–207CrossRefGoogle Scholar
  57. 57.
    Pradhan S K, Reucroft P J, Yang F, et al. Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J Crystal Growth, 2003, 256: 83–88CrossRefGoogle Scholar
  58. 58.
    Limmer S J, Chou T P, Cao G Z. A study on the growth of TiO2 nanorods using sol electrophoresis. J Mat Sci, 2004, 39: 895–901CrossRefGoogle Scholar
  59. 59.
    Attar A S, Ghamsari M S, Hajiesmaeilbaigi F, et al. Synthesis and characterization of anatase and rutile TiO2 nanorods by tem plate-assisted method. J Mat Sci, 2008, 43: 5924–5929CrossRefGoogle Scholar
  60. 60.
    Hagfeldtt A, Grätzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev, 1995, 95: 49–68CrossRefGoogle Scholar
  61. 61.
    Bahnemann D W, Kormann C, Hoffmann M R. Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. J Phys Chem, 1987, 91: 3789–3798CrossRefGoogle Scholar
  62. 62.
    Sivula K, Formal F L, Grätzel M. WO3-Fe2O3 Photoanodes for water splitting: A host scaffold, guest absorber approach. Chem Mater, 2009, 21: 2862–2867CrossRefGoogle Scholar
  63. 63.
    Miller R J D, McLendon G L, Nozik A J, et al. Surface Electron-transfer Processes. New York: VCH, 1995Google Scholar
  64. 64.
    Nishikiori H, Qian W, El-Sayed M A, et al. Change in titania structure from amorphousness to crystalline increasing photoinduced electron-transfer rate in dye-titania system. J Phys Chem C Lett, 2007, 111: 9008–9011CrossRefGoogle Scholar
  65. 65.
    Benkö G, Skårman B, Wallenberg R, et al. Particle size and crystallinity dependent electron injection in fluorescein 27-sensitized TiO2 films. J Phys Chem B, 2003, 107: 1370–1375CrossRefGoogle Scholar
  66. 66.
    Li X Z, Zhao W, Zhao J C. Visible light-sensitized semiconductor photocatalytic degradation of 2,4-dichlorophenol. Sci China Ser B-Chem, 2002, 45: 421–425CrossRefGoogle Scholar
  67. 67.
    Hirano K, Suzuki E, Ishikawa A. Sensitization of TiO2 particles by dyes to achieve H2 evolution by visible light. J Photochem Photobiol A Chem, 2000, 136: 157–161CrossRefGoogle Scholar
  68. 68.
    Kay A, Grätzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol Energy Mater Sol Cells, 1996, 44: 99–117CrossRefGoogle Scholar
  69. 69.
    Grätzel M. Dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev, 2003, 4: 145–153CrossRefGoogle Scholar
  70. 70.
    Wu T, Lin T, Zhao J, et al. TiO2-assisted photodegradation of dyes. 9. Photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Environ Sci Technol, 1999, 33: 1379–1387CrossRefGoogle Scholar
  71. 71.
    Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett, 2003, 3: 1049–1051CrossRefGoogle Scholar
  72. 72.
    Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, et al. Bioinorganic photochemistry: Frontiers and mechanisms. Chem Rev, 2005, 105: 2647–2694CrossRefGoogle Scholar
  73. 73.
    Grätzel M, Howe R F. Electron paramagnetic resonance studies of doped TiO2 colloids. J Phys Chem, 1990, 94: 2566–2572CrossRefGoogle Scholar
  74. 74.
    Choi Y, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem, 1994, 98: 13669–13679CrossRefGoogle Scholar
  75. 75.
    Joshi M M, Labhsetwar N K, Mangrulkar P A, et al. Visible light induced photoreduction of methyl orange by N-doped mesoporous titania. App Catal A General, 2009, 357: 26–33CrossRefGoogle Scholar
  76. 76.
    Maruska H P, Ghosh A K. Transition-metal dopants for extending the response of titanate photoelectrolysis anodes. Sol Energy Mater, 1979, 1: 237–247CrossRefGoogle Scholar
  77. 77.
    Gautron J, Lemasson P, Marucco J M. Correlation between the non-stoichiometry of titanium dioxide and its photoelectrochemical behaviour. Faraday Discuss Chem Soc, 1981, 70: 81–91CrossRefGoogle Scholar
  78. 78.
    Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem Rev, 1995, 93: 341–357CrossRefGoogle Scholar
  79. 79.
    Xin B, Ren Z, Wang P, et al. Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+-TiO2 photocatalysts. App Surf Sci, 2007, 253: 4390–4395CrossRefGoogle Scholar
  80. 80.
    Li R, Chen W, Wang W. Magnetoswitchable controlled photocatalytic system using ferromagnetic Fe-doped titania nanorods photocatalysts with enhanced photoactivity. Sep Purif Technol, 2009, 66: 171–176CrossRefGoogle Scholar
  81. 81.
    Periyasami V, Chinnathambi M, Chinnathambi S, et al. Photocatalytic activity of iron doped nanocrystalline titania for the oxidative degradation of 2,4,6-trichlorophenol. Catal Today, 2009, 141: 220–224CrossRefGoogle Scholar
  82. 82.
    Khan M A, Han D H, Yang O B. Enhanced photoresponse towards visible light in Ru doped titania nanotube. Appl Surf Sci, 2009, 255: 3687–3690CrossRefGoogle Scholar
  83. 83.
    Prasad G K, Singh B, Ganesan K, et al. Modified titania nanotubes for decontamination of sulphur mustard. J Hazard Mater, 2009, 167: 1192–1197CrossRefGoogle Scholar
  84. 84.
    El-Bahy Z M, Ismail A A, Mohamed R M. Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct blue). J Hazard Mater, 2009, 166: 138–143CrossRefGoogle Scholar
  85. 85.
    Wang C, Ao Y, Wang P, et al. Photocatalytic performance of Gd ion modified titania porous hollow spheres under visible light. Mat Lett, 2010, 64: 1003–1006CrossRefGoogle Scholar
  86. 86.
    Wang C, Ao Y, Wang P, et al. Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium. J Hazard Mater, 2010, 178: 517–521CrossRefGoogle Scholar
  87. 87.
    Rupa A V, Divakar D, Sivakumar T. Titania and noble metals deposited titania catalysts in the photodegradation of tartrazine. Catal Lett, 2009, 132: 259–267CrossRefGoogle Scholar
  88. 88.
    Papp J, Shen H S, Kershaw R, et al. Titanium(IV) oxide photocatalysts with palladium. Chem Mater, 1993, 5: 284–288CrossRefGoogle Scholar
  89. 89.
    Thampi K R, Kiwi J, Grätzel M. Methanation and photomethanation of carbon dioxide at room temperature and atmospheric pressure. Nature, 1987, 327: 506–508CrossRefGoogle Scholar
  90. 90.
    Adachi K, Ohta K, Mizuno T. Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Sol Energ, 1994, 53: 187–190CrossRefGoogle Scholar
  91. 91.
    Wong W K, Malati M A. Doped TiO2 for solar energy applications. Sol Energy, 1986, 36: 163–168CrossRefGoogle Scholar
  92. 92.
    Wu N L, Lee M S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. Inter J Hydro Energ, 2004, 29: 1601–1605CrossRefGoogle Scholar
  93. 93.
    Turner M, Golovko V B, Vaughan O P H, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature, 2008, 454: 981–983CrossRefGoogle Scholar
  94. 94.
    Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement of photocatalytic activity by metal deposition: Characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res, 2004, 38: 3001–3008CrossRefGoogle Scholar
  95. 95.
    Xu J, Ao Y, Chen M, et al. Low-temperature preparation of Boron-doped titania by hydrothermal method and its photocatalytic activity. J Alloy Comp, 2009, 484: 73–79CrossRefGoogle Scholar
  96. 96.
    Xu J, Ao Y, Chen M. Preparation of B-doped titania hollow sphere and its photocatalytic activity under visible light. Mat Lett, 2009, 63: 2442–2444CrossRefGoogle Scholar
  97. 97.
    Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293: 269–271Google Scholar
  98. 98.
    Diwald O, Thompson T L, Goralski E G, et al. The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals. J Phys Chem B, 2004, 108: 52–57CrossRefGoogle Scholar
  99. 99.
    Ao Y, Xu J, Zhang S, et al. A one-pot method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. Appl Surf Sci, 2010, 256: 2754–2758CrossRefGoogle Scholar
  100. 100.
    Dong L, Cao G X, Ma Y, et al. Enhanced photocatalytic degradation properties of nitrogen-doped titania nanotube arrays. Trans Nonferrous Met Soc China, 2009, 19: 1583–1587CrossRefGoogle Scholar
  101. 101.
    Yu J C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powder. Chem Mater, 2002, 14: 3808–3816CrossRefGoogle Scholar
  102. 102.
    Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. Angrew Chem Int Ed, 2003, 42: 4908–4911CrossRefGoogle Scholar
  103. 103.
    Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett, 2006, 6: 24–28CrossRefGoogle Scholar
  104. 104.
    Meng N, Leung M K H, Leung D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev, 2007 11: 401–425CrossRefGoogle Scholar
  105. 105.
    Yang P, Lu C, Hua N, et al. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater Lett, 2002, 57: 794–801CrossRefGoogle Scholar
  106. 106.
    Vasiliu F, Diamandescu L, Macovei D, et al. Fe-and Eu-doped TiO2 photocatalytical materials prepared by high energy ball milling. Top Catal, 2009, 52: 544–556CrossRefGoogle Scholar
  107. 107.
    Song K, Zhou J, Bao J, et al. Photocatalytic activity of (copper, nitrogen)-codoped titanium dioxide nanoparticles. J Am Ceram Soc, 2008, 91: 1369–1371CrossRefGoogle Scholar
  108. 108.
    Xu J, Ao Y, Fu D. A novel Ce, C-codoped TiO2 nanoparticles and its photocatalytic activity under visible light. Appl Surf Sci, 2009, 256: 884–888CrossRefGoogle Scholar
  109. 109.
    Shen X Z, Liu Z C, Xie S M, et al. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. J Hazard Mater, 2009, 162: 1193–1198CrossRefGoogle Scholar
  110. 110.
    Yang X, Ma F, Li K, et al. Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: New efficient photocatalyst for dye degradation. J Hazard Materer, 2010, 175: 429–438CrossRefGoogle Scholar
  111. 111.
    Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem, 1994, 98: 3183–3188CrossRefGoogle Scholar
  112. 112.
    Gopidas K R, Bohorquez M, Kamat P V. Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems. J Phys Chem, 1990, 94: 6435–6440CrossRefGoogle Scholar
  113. 113.
    Nayak B B, Acharya H N, Mitra G B, et al. Structural characterization of Bi2–xSbxS3 films prepared by the dip-dry method. Thin Solid Film, 1983, 105: 17–24CrossRefGoogle Scholar
  114. 114.
    Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J Photochem Photobiol A Chem, 2004, 163: 569–580CrossRefGoogle Scholar
  115. 115.
    Song K Y, Park M K, Kwon Y T, et al. Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties. Chem Mater, 2001, 13: 2349–2355CrossRefGoogle Scholar
  116. 116.
    Grandcolas M, Du K L, Louvet F B A, et al. Porogen template assisted TiO2 rutile coupled nanomaterials for improved visible and solar light photocatalytic applications. Catal Lett, 2008, 123: 65–71CrossRefGoogle Scholar
  117. 117.
    Wang C, Shao C, Zhang X, et al. SnO2 Nanostructures-TiO2 nanofibers heterostructures: Controlled fabrication and high photocatalytic properties. Inorg Chem, 2009, 48: 7261–7268CrossRefGoogle Scholar
  118. 118.
    Vinodgopal K, Bedja I, Kamat P V. Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chem Mater, 1996, 8: 2180–2187CrossRefGoogle Scholar
  119. 119.
    Zhang L W, Fu H B, Zhu Y F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv Funct Mater, 2008, 18: 2180–2189CrossRefGoogle Scholar
  120. 120.
    Zhang L W, Wang Y, Xu T, et al. Surface hybridization effect of C60 molecules on TiO2 and enhancement of the photocatalytic activity. J Mol Cataly A: Chem, 2010, 331: 7–14CrossRefGoogle Scholar
  121. 121.
    Ji S, Murakami S, Kamitakahara M, et al. Fabrication of titania/hydroxyapatite composite granules for photo-catalyst. Mater Res Bull, 2009, 44: 768–774CrossRefGoogle Scholar
  122. 122.
    Takeuchi M, Sakai S, Ebrahimi A, et al. Application of highly functional Ti-oxide-based photocatalysts in clean technologies. Top Cataly, 2009, 52: 1651–659CrossRefGoogle Scholar
  123. 123.
    Zhang X, Lei L, Zhang J, et al. A novel CdS/S-TiO2 nanotubes photocatalyst with high visible light activity. Separ Purif Tech, 2009, 66: 417–421CrossRefGoogle Scholar
  124. 124.
    Ferry J L, Glaze W H. Photocatalytic reduction of nitroorganics over illuminated titanium dioxide: Electron transfer between excited-state TiO2 and nitroaromatics. J Phys Chem B, 1998, 102: 2239–2244CrossRefGoogle Scholar
  125. 125.
    Kumar A, Jain A K. Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors-photocatalytic oxidation of indole. J Mol Catal A Chemical, 2001, 165: 265–273CrossRefGoogle Scholar
  126. 126.
    Rajeshwar K, de Tacconi N R, Chenthamarakshan C R. Semiconductor-based composite materials: Preparation, properties, and performance. Chem Mater, 2001, 13: 2765–2782CrossRefGoogle Scholar
  127. 127.
    Gerischer H. On the stability of semiconductor electrodes against photodecomposition. J Electroanal Chem, 1977, 82: 133–143CrossRefGoogle Scholar
  128. 128.
    Ocana M, Hsu W P, Matijevic E. Preparation and properties of uniform-coated colloidal particles. 6. Titania on zinc oxide. Langmuir, 1991, 7: 2911–2916CrossRefGoogle Scholar
  129. 129.
    Bedja I, Kamat P V. Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO2 capped SnO2 nanocrystallites. J Phys Chem, 1995, 99: 9182–9188CrossRefGoogle Scholar
  130. 130.
    Lim S H, Phonthammachai N, Pramana S S, et al. Simple route to monodispersed silica-titania core-shell photocatalysts. Langmuir, 2008, 24: 6226–6231CrossRefGoogle Scholar
  131. 131.
    Elder S H, Cot F M, Su Y, et al. The discovery and study of nanocrystalline TiO2-(MoO3) core-shell materials. J Am Chem Soc, 2000, 122: 5138–6146CrossRefGoogle Scholar
  132. 132.
    Sung Y M, Lee J K, Chae W S. Controlled crystallization of nanoporous and core/shell structure titania photocatalyst particles. Crystal Growth Desig, 2006, 6: 805–808CrossRefGoogle Scholar
  133. 133.
    Liz-Marzan L M, Mulvaney P. The assembly of coated nanocrystals. J Phys Chem B, 2003, 107: 7312–7326CrossRefGoogle Scholar
  134. 134.
    Hirakawa T, Kamat P V. Electron storage and surface plasmon modulation in Ag@TiO2 clusters. Langmuir, 2004, 20: 5645–5647CrossRefGoogle Scholar
  135. 135.
    Comparelli R, Fanizza E, Curri M L, et al. Photocatalytic degradation of azo dyes by organic-capped anatase TiO2 nanocrystals immobilized onto substrates. Appl Catal B, 2005, 55: 81–91CrossRefGoogle Scholar
  136. 136.
    Fittipaldi M, Curri M L, Comparelli R, et al. A multifrequency EPR study on organic-capped anatase TiO2 nanocrystals. J Phys Chem C, 2009, 113: 6221–6226CrossRefGoogle Scholar
  137. 137.
    Parkin I P, Palgrave R G. Self-cleaning coatings. J Mater Chem, 2005, 15: 1689–1695CrossRefGoogle Scholar
  138. 138.
    Mills A, Hodgen S, Lee S K. Self-cleaning titania films: An overview of direct, lateral and remote photo-oxidation processes. Res Chem Intermed, 2005, 31: 295–308CrossRefGoogle Scholar
  139. 139.
    Toma F L, Bertrand G, Klein D, et al. Development of photocatalytic active TiO2 surfaces by thermal spraying of nanopowders. J Nanomater, 2008, 1–8Google Scholar
  140. 140.
    Sekiguchi Y, Yao Y, Ohko Y, et al. Self-sterilizing catheters with titanium dioxide photocatalyst thin films for clean intermittent catheterization: Basis and study of clinical use. Int J Urology, 2007, 14, 426-430Google Scholar
  141. 141.
    Mahmoodi N M, Arami M. Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. J Photochem Photobiol B Biol, 2009, 94: 20–24CrossRefGoogle Scholar
  142. 142.
    Taoda H. Development of TiO2 photocatalysts suitable for practical use and their applications in environmental cleanup. Res Chem Intermed, 2008, 34: 417–426CrossRefGoogle Scholar
  143. 143.
    Matthews R W, Mc Evoy S R. Photocatalytic degradation of phenol in the presence of near-UV illuminated titanium dioxide. J Photochem Photobiol A Chem, 1992, 64: 231–246CrossRefGoogle Scholar
  144. 144.
    Bui T H, Karkmaz M, Puzenat E, et al. Solar purification and potabilization of water containing dyes. Res Chem Intermed, 2007, 33: 421–431CrossRefGoogle Scholar
  145. 145.
    Prairie M R, Evans L R, Martinez S L. Destruction of organics and removal of heavy metals in water via TiO2, photocatalysis in chemical oxidation: Technology for the nineties. In: Second International Symposium. Lancaster: Technomic Publishing Company, 1994Google Scholar
  146. 146.
    Asmussen R M, Tian M, Chen A. A new approach to wastewater remediation based on bifunctional electrodes. Environ Sci Technol, 2009, 43: 5100–5105CrossRefGoogle Scholar
  147. 147.
    Ali R, Hassan S H. Degradation studies on paraquat and malathion using TiO2/ZnO based photocatalyst. Malaysian J Anal Sci, 2008, 12: 77–87Google Scholar
  148. 148.
    Dai K, Peng T, Chen H, et al. Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environ Sci Technol, 2008, 42: 1505–1510CrossRefGoogle Scholar
  149. 149.
    Cao Y, Yi L, Huang L, et al. Mechanism and pathways of chlorfenapyr photocatalytic degradation in aqueous suspension of TiO2. Environ Sci Technol, 2006, 40: 3373–3377CrossRefGoogle Scholar
  150. 150.
    Dai K, Peng T, Chen H, et al. Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environ Sci Technol, 2009, 43: 1540–1545CrossRefGoogle Scholar
  151. 151.
    Konstantinou I K, Sakellarides T M, Sakkas V A, et al. Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environ Sci Technol, 2001, 35: 398–405CrossRefGoogle Scholar
  152. 152.
    Parra S, Olivero J, Pulgarin C. Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension. Appl Catal B, 2002, 36: 75–85CrossRefGoogle Scholar
  153. 153.
    Vulliet E, Emmelin C, Chovelon J M, et al. Photocatalytic degradation of sulfonylurea herbicides in aqueous TiO2. Appl Catal B, 2002, 38: 127–137CrossRefGoogle Scholar
  154. 154.
    Fujishima A, Kobayakawa K, Honda K. Hydrogen production under sunlight with an electrochemical photocell. J Electrochem Soc, 1975, 122: 1487–1489CrossRefGoogle Scholar
  155. 155.
    Fujihara K, Ohno T, Matsumura M. Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles. J Chem Soc Faraday Trans, 1998, 94: 3705–3709CrossRefGoogle Scholar
  156. 156.
    Kawai M, Naito S, Tamaru K, et al. The mechanism of photocatalytic hydrogen production from gaseous methanol and water: IR spectroscopic approach. Chem Phys Lett, 1983, 98: 377–380CrossRefGoogle Scholar
  157. 157.
    Seger B, Kamat P V. Fuel cell geared in reverse: Photocatalytic hydrogen production using a TiO2/nafion/Pt membrane assembly with no applied bias. J Phys Chem C, 2009, 113: 18946–18952CrossRefGoogle Scholar
  158. 158.
    Yoshida H, Hirao K, Nishimoto J, et al. Hydrogen production from methane and water on platinum loaded titanium oxide photocatalysts. J Phys Chem C, 2008, 112: 5542–5551CrossRefGoogle Scholar
  159. 159.
    Sayama K, Arakawa H. Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum-titanium(IV) oxide suspension. J Chem Soc Chem Commun, 1992, 150–152Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha UniversityDelhiIndia

Personalised recommendations