Recent developments in totally asymmetric simple exclusion processes with local inhomogeneity

  • MingZhe LiuEmail author
  • XianGuo TuoEmail author
  • RuiLi Wang
  • Rui Jiang
Open Access
Review Statistical Physics


A totally asymmetric simple exclusion process (TASEP) has become an essential tool in modeling and analyzing non-equilibrium systems. A wide variety of TASEP models have been developed that are motivated by real-world traffic, biological transport and by the dynamics of the process itself. This paper provides an overview of recent developments in TASEP with inhomogeneity. Some important generalizations and extensions of inhomogeneous TASEP models are reviewed, and several popular mean-field techniques used to analyze the inhomogeneous TASEP models are summarized. A comparison between similar TASEP models under different updating procedures is given. Phase separations in such disordered systems have been identified. The present status of the inhomogeneous TASEP models and areas for future investigations are also described.


totally asymmetric simple exclusion process inhomogeneity mean-field theory Monte Carlo simulations 


  1. 1.
    MacDonald C T, Gibbs J H, Pipkin A C. Kinetics of biopolymerization on nucleic acid templates. Biopolymers, 1968, 6: 1–25CrossRefGoogle Scholar
  2. 2.
    Derrida B, Domany E, Mukamel D. An exact solution of one dimensional asymmetric exclusion model with open boundaries. J Stat Phys, 1992, 69: 667–687CrossRefGoogle Scholar
  3. 3.
    Schütz G M. Phase Transitions and Critical Phenomena. San Diego: Academic Press, 2001Google Scholar
  4. 4.
    Widom B, Viovy J L, Defontaines A D. Repton model of gel electrophoresis and diffusion. J Phys I, 1991, 1: 1759–1784CrossRefGoogle Scholar
  5. 5.
    Schütz G M. The Heisenberg chain as a dynamical model for protein synthesis — Some theoretical and experimental results. Int J Mod Phys B, 1997, 11: 197–202CrossRefGoogle Scholar
  6. 6.
    Shaw L B, Zia R K P, Lee K H. Totally asymmetric exclusion process with extended objects: A model for protein synthesis. Phys Rev E, 2003, 68: 021910CrossRefGoogle Scholar
  7. 7.
    Chou T. Ribosome recycling, diffusion and mRNA loop formation in translational regulation. Biophys J, 2003, 85: 755–773CrossRefGoogle Scholar
  8. 8.
    Klumpp S, Lipowsky R. Traffic of molecular motors through tube-like compartments. J Stat Phys, 2003, 113: 233–268CrossRefGoogle Scholar
  9. 9.
    Klein G A, Kruse K, Cuniberti G, et al. Filament depolymerization by motor molecules. Phys Rev Lett, 2005, 94: 108102CrossRefGoogle Scholar
  10. 10.
    Chowdhury D, Santen L, Schadschneider A. Statistical physics of vehicular traffic and some related systems. Phys Rep, 2000, 329: 199–329CrossRefGoogle Scholar
  11. 11.
    Helbing D. Traffic and related self-driven many-particle systems. Rev Mod Phys, 2001, 73: 1067–1141CrossRefGoogle Scholar
  12. 12.
    Chowdhury D, Schadschneider A, Nishinari K. Physics of transport and traffic phenomena in biology: From molecular motors and cells to organisms. Phys Life Rev, 2005, 2: 318–352CrossRefGoogle Scholar
  13. 13.
    Lipowsky R, Chai Y, Klumpp S, et al. Molecular motor traffic: From biological nanomachines to macroscopic transport. Physica A, 2006, 372: 34–51CrossRefGoogle Scholar
  14. 14.
    Schütz G M. Critical phenomena and universal dynamics in onedimensional driven diffusive systems with two species of particles. J Phys A, 2003, 36: R339–R379CrossRefGoogle Scholar
  15. 15.
    Blythe R A, Evans MR. Nonequilibrium steady states of matrix-product form: A solver’s guide. J Phys A, 2007, 30: R333–R441CrossRefGoogle Scholar
  16. 16.
    Estrella B, Estrella R, Oviedo J, et al. Acute respiratory diseases and carboxyhemoglobin status in school children of Quito, Ecuador. Environ Health Perspect, 2005, 113: 607–611CrossRefGoogle Scholar
  17. 17.
    Neubert L, Santen L, Schadschneider A, et al. Single-vehicle data of highway traffic:A statistical analysis. Phys Rev E,1999, 60: 6480–6490CrossRefGoogle Scholar
  18. 18.
    Aridor M, Hannan L A. Traffic jams II: An update of diseases of intracellular transport. Traffic, 2002, 3: 781–790CrossRefGoogle Scholar
  19. 19.
    Kolomeisky A B. Asymmetric simple exclusion model with local inhomogeneity. J Phys A, 1998, 31: 1153–1164CrossRefGoogle Scholar
  20. 20.
    Liu M, Wang R, Jiang R, et al. Defect-induced transitions in synchroneous asymmetric exclusion processes. Phys Lett A,2009, 373: 195–200CrossRefGoogle Scholar
  21. 21.
    Shaw L B, Kolomeisky A B, Lee K H. Local inhomogeneity in asymmetric simple exclusion processes with extended objects. J Phys A, 2004, 37: 2105–2113CrossRefGoogle Scholar
  22. 22.
    Foulaadvand M E, Chaaboki S, Saalehi M. Characteristics of the asymmetric simple exclusion process in the presence of quenched spatial disorder. Phys Rev E, 2007, 75: 011127CrossRefGoogle Scholar
  23. 23.
    Pierobon P, Mobilia M, Kouyos R, et al. Bottleneck-induced transitions in a minimal model for intracellular transport. Phys Rev E, 2006, 74: 031906CrossRefGoogle Scholar
  24. 24.
    Wang R, Liu M, Jiang R. Local inhomogeneity in two-lane asymmetric simple exclusion processes coupled with Langmuir kinetics. Physica A, 2008, 387: 457–466CrossRefGoogle Scholar
  25. 25.
    Lakatos G, Chou T, Kolomeisky A B. Steady-state properties of a totally asymmetric exclusion process with periodic structure. Phys Rev E, 2005, 71: 011103CrossRefGoogle Scholar
  26. 26.
    Chou T, Lakatos G. Clustered bottlenecks in mRNA translation and protein synthesis. Phys Rev Lett, 2004, 93: 198101CrossRefGoogle Scholar
  27. 27.
    Dong J J, Schmittmann B, Zia R K P. Inhomogeneous exclusion processes with extended objects: The effect of defect locations. Phys Rev E, 2007, 76: 051113CrossRefGoogle Scholar
  28. 28.
    Greulich P, Schadschneider A. Phase diagram and edge effects in the ASEP with bottlenecks. Physica A, 2008, 387: 1972–1986CrossRefGoogle Scholar
  29. 29.
    Liu M, Wang R, Hu M B, et al. Synchronous asymmetric exclusion processes with an extended defect. Phys Lett A, 2010, 374: 1407–1413CrossRefGoogle Scholar
  30. 30.
    Xiao S, Cai J J, Liu F. Zone inhomogeneity with the random asymmetric simple exclusion process in a one-lane system. Chin Phys B, 2009, 18: 4613–4621CrossRefGoogle Scholar
  31. 31.
    Krug J. Phase separation in disordered exclusion models. Braz J Phys, 2000, 30: 97–104CrossRefGoogle Scholar
  32. 32.
    Huang D W. Analytical results of asymmetric exclusion processes with ramps. Phys Rev E, 2005, 72: 016102CrossRefGoogle Scholar
  33. 33.
    Foulaadvand ME, Kolomeisky A B, Teymouri H. Investigation of asymmetric exclusion processes with disorder: Effect of correlations. Phys Rev E, 2008, 78: 061116CrossRefGoogle Scholar
  34. 34.
    Sun X Y, Wang B H, Yang H X, et al. Effects of information feedback on an asymmetrical two-route scenario. Chinese Sci Bull, 2009, 54: 3211–3214CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.College of Nuclear Technology and Automation EngineeringChengdu University of TechnologyChengduChina
  2. 2.State Key Laboratory of Geohazard Prevention and Geoenvironment ProtectionChengdu University of TechnologyChengduChina
  3. 3.School of Engineering and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand
  4. 4.School of Engineering ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations