Chinese Science Bulletin

, Volume 56, Issue 9, pp 877–882 | Cite as

High-precision measurement of mercury isotope ratios of atmospheric deposition over the past 150 years recorded in a peat core taken from Hongyuan, Sichuan Province, China

  • WenFang Shi
  • XinBin Feng
  • Gan Zhang
  • LiLi Ming
  • RunSheng Yin
  • ZhiQi Zhao
  • Jing Wang
Open Access
Article Geochemistry


High-precision 210Pb dating technology was applied to a peat core with a time span of about 150 years that was taken from Hongyuan, Sichuan Province, China. The concentrations of total mercury (Hg) and stable isotope compositions of mercury in the peat core were measured using a LUMEX 915 instrument and multi-collector inductively coupled plasma mass spectrometer, respectively. Total mercury (Hg) concentrations in the peat core had a clearly increasing trend from the bottom to top of the core while δ 202Hg values (relative to NIST 3133) of peat had a decreasing trend. The total mercury (Hg) concentration varied from 16.7 to 101.3 ng/g and the δ 202Hg values ranged from −0.44‰ ± 0.14‰ to −1.45‰ ± 0.22‰. We clearly show that the study area experienced mercury pollution after the industrial revolution, and the mercury emitted from natural sources and anthropogenic sources had different Hg isotope signatures.


peat ombrotrophic mercury isotope industrialization 


  1. 1.
    Wang H, Hong Y T, Zhu Y Y, et al. Humification degrees of peat in Qinghai-Xizang Plateau and palaeoclimate change. Chinese Sci Bull, 2004, 49: 514–519Google Scholar
  2. 2.
    Hong B, Lin Q H, Zhu Y Y, et al. Carbon isotopic composition of the Carex Mulieenisis remain of the Hongyuan peat bog in the eastern plateau and the India Ocean sumer monsoon variation in the Holocean (in Chinese). Bull Mineral Petrol Geochem, 2003, 22: 99–103Google Scholar
  3. 3.
    Martinez-Cortizas A, Pontevedra-Pombal X, Garcia-Rodeja E, et al. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition. Science, 1999, 284: 939–942CrossRefGoogle Scholar
  4. 4.
    Rey-Salgueiro L, Pontevedra-Pombal X, Alvarez-Casas M, et al. Comparative performance of extraction strategies for polycyclic aromatic hydrocarbons in peats. J Chromatogr A, 2009, 1216: 5235–5241CrossRefGoogle Scholar
  5. 5.
    Givelet N, Roos-Barraclough F, Goodsite M E, et al. A 6000-years record of atmospheric mercury accumulation in the high Arctic from peat deposits on Bathurst Island, Nunavut, Canada. J Phys Iv, 2003, 107: 545–548Google Scholar
  6. 6.
    Roos-Barraclough F, Martinez-Cortizas A, Garcia-Rodeja E, et al. A 14500 year record of the accumulation of atmospheric mercury in peat: volcanic signals, anthropogenic influences and a correlation to bromine accumulation. Earth Planet Sci Lett, 2002, 202: 435–451CrossRefGoogle Scholar
  7. 7.
    Biester H, Kilian R, Franzen C, et al. Elevated mercury accumulation in a peat bog of the Magellanic Moorlands, Chile (53 degrees S)—An anthropogenic signal from the Southern Hemisphere. Earth Planet Sci Lett, 2002, 201: 609–620CrossRefGoogle Scholar
  8. 8.
    Jensen A, Jensen A. Historical deposition rates of mercury in Scandinavia estimated by dating and measurement of mercury in cores of peat bogs. Water Air Soil Poll, 1991, 56: 769–777CrossRefGoogle Scholar
  9. 9.
    Golovatskaya E A, Lyapina E E. Distribution of total mercury in peat soil profiles in West Siberia. Contemp Probl Ecol, 2009, 2: 156–161CrossRefGoogle Scholar
  10. 10.
    Farmer J G, Anderson P, Cloy J M, et al. Historical accumulation rates of mercury in four Scottish ombrotrophic peat bogs over the past 2000 years. Sci Total Environ, 2009, 407: 5578–5588CrossRefGoogle Scholar
  11. 11.
    Bulgariu L, Ratoi M, Bulgariu D, et al. Adsorption potential of mercury (II) from aqueous solutions onto Romanian peat moss. J Environ Sci Heal A, 2009, 44: 700–706CrossRefGoogle Scholar
  12. 12.
    Klaminder J, Yoo K, Rydberg J, et al. An explorative study of mercury export from a thawing palsa mire. J Geophys Res-Biogeo, 2008, 113: 1–9Google Scholar
  13. 13.
    Ettler V, Navratil T, Mihaljevic M, et al. Mercury deposition/accumulation rates in the vicinity of a lead smelter as recorded by a peat deposit. Atmos Environ, 2008, 42: 5968–5977CrossRefGoogle Scholar
  14. 14.
    Liu R H, Wang Q C, Lu X G, et al. Distribution and speciation of mercury in the peat bog of Xiaoxing’an Mountain, northeastern China. Environ Pollut, 2003, 124: 39–46CrossRefGoogle Scholar
  15. 15.
    Biester H, Martinez-Cortizas A, Birkenstock S, et al. Effect of peat decomposition and mass loss on historic mercury records in peat bogs from Patagonia. Environ Sci Technol, 2003, 37: 32–39CrossRefGoogle Scholar
  16. 16.
    Roos-Barraclough F, Givelet N, Martinez-Cortizas A, et al. An analytical protocol for the determination of total mercury concentrations in solid peat samples. Sci Total Environ, 2002, 292: 129–139CrossRefGoogle Scholar
  17. 17.
    Lauretta D S, Klaue B, Blum J D, et al. Inductively coupled plasma mass spectrometry measurements of bulk mercury abundances and isotopic ratios in Murchison (CM) and Allende (CV). Meteor Planet Sci, 2000, 35: A95–A96CrossRefGoogle Scholar
  18. 18.
    Lauretta D S, Klaue B, Blum J D, et al. Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites. Geochim Cosmochim Acta, 2001, 65: 2807–2818CrossRefGoogle Scholar
  19. 19.
    Sherman L S, Blum J D, Nordstrom D K, et al. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift. Earth Planet Sci Lett, 2009, 279: 86–96CrossRefGoogle Scholar
  20. 20.
    Smith C N, Kesler S E, Blum J D, et al. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA. Earth Planet Sci Lett, 2008, 269: 399–407CrossRefGoogle Scholar
  21. 21.
    Biswas A, Blum J D, Bergquist B A, et al. Natural mercury isotope variation in coal deposits and organic soils. Environ Sci Technol, 2008, 42: 8303–8309CrossRefGoogle Scholar
  22. 22.
    Foucher D, Ogrinc N, Hintelmann H. Tracing mercury contamination from the Idrija mining region (Slovenia) to the gulf of Trieste using Hg isotope ratio measurements. Environ Sci Technol, 2009, 43: 33–39CrossRefGoogle Scholar
  23. 23.
    Feng X B, Foucher D, Hintelmann H, et al. Tracing mercury contamination sources in sediments using mercury isotope compositions. Environ Sci Technol, 2010, 44: 3363–3368CrossRefGoogle Scholar
  24. 24.
    Carignan J, Estrade N, Sonke J E, et al. Odd isotope deficits in atmospheric Hg measured in lichens. Environ Sci Technol, 2009, 43: 5660–5664CrossRefGoogle Scholar
  25. 25.
    Bergquist B A, Blum J D. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science, 2007, 318: 417–420CrossRefGoogle Scholar
  26. 26.
    Bergquist B A, Blum J D. Mass-dependent and mass-independent fractionation of Hg isotopes in aquatic systems. Geochim Cosmochim Acta, 2007, 71: A83–A83CrossRefGoogle Scholar
  27. 27.
    Sherman L S, Blum J D, Johnson K P, et al. Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight. Nature Geoscience, 2010, 3: 173–177CrossRefGoogle Scholar
  28. 28.
    Yin R S, Feng X B, Foucher D, et al. High precision determination of mercury isotope ratios using online mercury vapor generation system coupled with Multi-collector Inductively Coupled Plasma-Mass Spectrometry (in Chinese). Chin J Anal Chem, 2010, 38: 929–934CrossRefGoogle Scholar
  29. 29.
    Blum J D, Bergquist B A. Reporting of variations in the natural isotopic composition of mercury. Anal Bioanal Chem, 2007, 388: 353–359CrossRefGoogle Scholar
  30. 30.
    He G R. Geological features of Hongyuan peat land I and II (in Chinese). Acta Geol Sichuan, 1998, 18: 126–130Google Scholar
  31. 31.
    Sun G Y, Luo X Z, Turner E T. A study on peat deposition chronology of Holocene of Zorge Plateau in the Northeast Qinghai-Tibetan Plateau (in Chinese). Acta Sedimentol Sin, 2001, 19: 177–181Google Scholar
  32. 32.
    Xu H, Hong Y T, Ling Q H, et al. Temperature variations in the past 6000 years inferred from δ 18O of peat cellulose from Hongyuan, China. Chinese Sci Bull, 2002, 47: 1575–1584Google Scholar
  33. 33.
    Zhou W J, Lu W F, Wu Z K, et al Peat record reflecting Holocene climatic change in the Zoige Plateau and AMS radiocarbon dating. Chinese Sci Bull, 2002, 47: 66–74CrossRefGoogle Scholar
  34. 34.
    Tang W C. The environmental geochemical characters and studies of Ruoergai Pasture (in Chinese). Computing Techniques for Geophysical and Geochemical Exploration, 2001, 23: 353–356Google Scholar
  35. 35.
    Yu X F, Zhou W J, Lars G F, et al. Grain size characteristics of the Holocene peat sediment in Eastern Tibetan Plateau and its paleoclimatic significance (in Chinese). Acta Sedimentol Sin, 2006, 24: 864–865Google Scholar
  36. 36.
    Rodriguez L, Rincon J, Asencio I, et al. Capability of selected crop plants for shoot mercury accumulation from polluted soils: Phytoremediation perspectives. Int J Phytoremediat, 2007, 9: 1–13CrossRefGoogle Scholar
  37. 37.
    Stetson S J, Gray J E, Wanty R B, et al. Mercury stable isotope variability in ore, mine-waste calcine, and leachates of mine-waste calcine within a historical mercury mining district. Geochim Cosmochim Acta, 2009, 73: A1274Google Scholar
  38. 38.
    Zheng W, Hintelmann H. Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio. Geochim Cosmochim Acta, 2009, 73: 6704–6715CrossRefGoogle Scholar
  39. 39.
    Estrade N, Carignan J, Sonke J E, et al. Mercury isotope fractionation during liquid-vapor evaporation experiments. Geochim Cosmochim Acta, 2009, 73: 2693–2711CrossRefGoogle Scholar
  40. 40.
    Zheng W, Foucher D, Hintelmann H. Mercury isotope fractionation during volatilization of Hg(0) from solution into the gas phase. J Anal Atom Spectrom, 2007, 22: 1097–1104CrossRefGoogle Scholar
  41. 41.
    Lindberg S, Bullock R, Ebinghaus R, et al. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 2007, 36: 19–32CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • WenFang Shi
    • 1
    • 2
  • XinBin Feng
    • 1
  • Gan Zhang
    • 3
  • LiLi Ming
    • 2
    • 3
  • RunSheng Yin
    • 1
    • 2
  • ZhiQi Zhao
    • 1
  • Jing Wang
    • 1
  1. 1.The State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina

Personalised recommendations