Chinese Science Bulletin

, Volume 56, Issue 4–5, pp 355–366 | Cite as

Progress in quantitative analysis of plant hormones

  • JiHong Fu
  • XiaoHong Sun
  • JiDe Wang
  • JinFang Chu
  • CunYu Yan
Open Access
Review Plant Physiology


Plant hormones are small molecular natural products that regulate all plant developmental processes at low concentrations. Quantitative analysis of plant hormones is increasingly important for in-depth study of their biosynthesis, transport, metabolism and molecular regulatory mechanisms. Although plant hormone analysis remains a bottleneck in plant scientific research owing to the trace concentrations and complex components in plant crude extracts, much progress has been achieved in the development of extraction, purification and detection techniques in recent years. Solid phase extraction and chromatography/mass spectrometry have been applied widely for purification and quantitative analysis of plant hormones owing to their high selectivity and sensitivity. Purification methods such as liquid partition and immunoaffinity chromatography, and detection methods including immunoassay and electrochemical analysis, are employed. The advantages and disadvantages of these methods are discussed. In situ, real-time and multi-plant hormone profiling will comprise mainstream techniques for quantitative analyses in future studies on the regulatory mechanisms and crosstalk of plant hormones.


plant hormones quantitative analysis solid phase extraction liquid chromatography gas chromatography mass spectrometry 


  1. 1.
    Davies P J. Plant Hormones: Physiology, Biochemistry and Molecular Biology. Dordrecht, Netherlands: Kluwer, 1995. 1–12Google Scholar
  2. 2.
    Harman G E, Howell C R, Viterbo A, et al. Trichoderma species-opportunistic avirulent plant symbionts. Nat Rev Microbiol, 2004, 2: 43–56CrossRefGoogle Scholar
  3. 3.
    Bray E A. Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ, 2002, 25: 153–161CrossRefGoogle Scholar
  4. 4.
    Durrant W E, Dong X. Systemic acquired resistance. Annu Rev Phytopathol, 2004, 42: 185–209CrossRefGoogle Scholar
  5. 5.
    Hao J J, Kang C L. Plant Biology. Beijing: Chemical Industry Press, 2005. 160Google Scholar
  6. 6.
    Barkawi L S, Tam Y Y, Tillman J A, et al. A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal Biochem, 2008, 372: 177–188CrossRefGoogle Scholar
  7. 7.
    Vine J H, Noiton D, Plummer J A, et al. Simultaneous quantitation of indole 3-acetic acid and abscisic acid in small samples of plant tissue by gas chromatography-mass spectrometry/selected ion monitoring. Plant Physiol, 1987, 85: 419–422CrossRefGoogle Scholar
  8. 8.
    Ross A R S, Ambrose S J, Cutler A J, et al. Determination of endogenous and supplied deuterated abscisic acid in plant tissues by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry with multiple reaction monitoring. Anal Biochem, 2004, 329: 324–333CrossRefGoogle Scholar
  9. 9.
    Vilaró F, Canela-Xandri A, Canela R. Quantification of abscisic acid in grapevine leaf (Vitis vinifera) by isotope-dilution liquid chromatographymass spectrometry. Anal Bioanal Chem, 2006, 386: 306–312CrossRefGoogle Scholar
  10. 10.
    Novak O, Hauserova E, Amakorova P, et al. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry, 2008, 69: 2214–2224CrossRefGoogle Scholar
  11. 11.
    Gawronska H, Yang Y Y, Furukawa K, et al. Effects of low irradiance stress on gibberellin levels in pea-seedlings. Plant Cell Physiol, 1995, 36: 1361–1367Google Scholar
  12. 12.
    Kristl J, Veber M, Krajničič B, et al. Determination of jasmonic acid in Lemna minor (L.) by liquid chromatography with fluorescence detection. Anal Bioanal Chem, 2005, 383: 886–893CrossRefGoogle Scholar
  13. 13.
    Engelberth J, Schmelz E A, Alborn H T, et al. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Anal Biochem, 2003, 312: 242–250CrossRefGoogle Scholar
  14. 14.
    Cao J, Murch S J, O’Brien R, et al. Rapid method for accurate analysis of melatonin, serotonin and auxin in plant samples using liquid chromatography-tandem mass spectrometry. J Chromatogr A, 2006, 1134: 333–337CrossRefGoogle Scholar
  15. 15.
    Liu B F, Zhong X H, Lu Y T. Analysis of plant hormones in tobacco flowers by micellar electrokinetic capillary chromatography coupled with on-line large volume sample stacking. J Chromatogr A, 2002, 945: 257–265CrossRefGoogle Scholar
  16. 16.
    Zhang F J, Jin Y J, Xu X Y, et al. Study on the extraction, purification and quantification of jasmonic acid, abscisic acid and indole-3-acetic acid in plants. Phytochem Anal, 2008, 19: 560–567CrossRefGoogle Scholar
  17. 17.
    Moritz T, Olsent J E. Comparison between high resolution selected ion monitoring, selected reaction monitoring and four-sector tandem mass spectrometry quantitative analysis of gibberellins in milligram amounts of plant tissue. Anal Chem, 1995, 67: 1711–1716CrossRefGoogle Scholar
  18. 18.
    Symons G M, Reid J B. Hormone levels and response during de-etiolation in Pea. Planta, 2003, 216: 422–431Google Scholar
  19. 19.
    Jager C E, Symons G M, Nomura T, et al. Characterization of two brassinosteroid C-6 oxidase genes in Pea. Plant Physiol, 2007, 143: 1894–1904CrossRefGoogle Scholar
  20. 20.
    Zullo M A T, Adam G. Brassinosteroid phytohormones-structure, bioactivity and applications. Braz J Plant Physiol, 2002, 14: 143–181CrossRefGoogle Scholar
  21. 21.
    Rozhon W, Petutschnig E, Wrzaczek M, et al. Quantification of free and total salicylic acid in plants by solid-phase extraction and isocratic high-performance anion-exchange chromatography. Anal Bioanal Chem, 2005, 382: 1620–1627CrossRefGoogle Scholar
  22. 22.
    Eshita S M. 3-hydroxybenzoic acid as an internal standard for the high-pressure liquid chromatography quantitation of salicylic acid in plants. Anal Biochem, 2001, 289: 99–102CrossRefGoogle Scholar
  23. 23.
    Enyedi A J, Yalpani N, Silverman P, et al. Localization, conjugation and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci USA, 1992, 89: 2480–2484CrossRefGoogle Scholar
  24. 24.
    Bieleski R L. The problem of halting enzyme action when extracting plant tissues. Anal Biochem, 1964, 9: 431–442CrossRefGoogle Scholar
  25. 25.
    Horgan R, Scott I M. Cytokinins. In: Rivier L, Crozier A, eds. The Principles and Practice of Plant Hormone Analysis. London: Academic Press, 1987. 304–365Google Scholar
  26. 26.
    Laloue M, Terrine C, Gawer M. Cytokinins: Formation of the nucleoside-50-triphosphate in tobacco and Acer cells. FEBS Lett, 1974, 46: 45–50CrossRefGoogle Scholar
  27. 27.
    Hoyerová K, Gaudinová A, Malbeck J, et al. Efficiency of different methods of extraction and purification of cytokinins. Phytochemistry, 2006, 67: 1151–1159CrossRefGoogle Scholar
  28. 28.
    Izumi Y, Okazawa A, Bamba T, et al. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal Chim Acta, 2009, 648: 215–225CrossRefGoogle Scholar
  29. 29.
    Wu Y, Hu B. Simultaneous determination of several phytohormones in natural coconut juice by hollow fiber-based liquid-liquid-liquid microextraction-high performance liquid chromatography. J Chromatogr A, 2009, 1216: 7657–7663CrossRefGoogle Scholar
  30. 30.
    Ribnicky D M, Cooke T J, Cohen J D. A microtechnique for the analysis of free and conjugated indole-3-acetic acid in milligram amounts of plant tissue using a benchtop gas chromatograph-mass spectrometer. Planta, 1998, 204: 1–7CrossRefGoogle Scholar
  31. 31.
    Wijayanti L, Kobayashi M, Fujioka S, et al. Identification and quantification of abscisic acid, indole-3-acetic acid and gibberllins in phloem exudates of Pharbitis nil. Biosci Biotech Biochem, 1995, 59: 1533–1535CrossRefGoogle Scholar
  32. 32.
    Dunlap J R, Guinn G. A simple purification of indole-3-acetic acid and abscisic acid for GC-SIM-MS analysis by microfiltration of aqueous samples through nylon. Plant Physiol, 1989, 90: 197–201CrossRefGoogle Scholar
  33. 33.
    Varbanova M, Yamaguchi S, Yang Y, et al. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell, 2007, 19: 32–45CrossRefGoogle Scholar
  34. 34.
    Astot C, Dolezal K, Moritz T, et al. Deuterium in vivo labelling of cytokinins in Arabidopsis thaliana analysed by capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. J Mass Spectrom, 2000, 35: 13–22CrossRefGoogle Scholar
  35. 35.
    Novák O, Tarkowski P, Tarkowská D, et al. Quantitative analysis of cytokinins in plants by liquid chromatography-single-quadrupole mass spectrometry. Anal Chim Acta, 2003, 480: 207–218CrossRefGoogle Scholar
  36. 36.
    Ma Z, Ge L, Lee A S Y, et al. Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry after solid-phase extraction. Anal Chim Acta, 2008, 610: 274–281CrossRefGoogle Scholar
  37. 37.
    Matsuda F, Miyazawa H, Wakasa K, et al. Quantification of indole-3-acetic acid and amino acid conjugates in rice by liquid chromatography-electrospray ionization-tandem mass spectrometry. Biosci Biotechnol Biochem, 2005, 69: 778–783CrossRefGoogle Scholar
  38. 38.
    Rhijn J A V, Heskamp H H, Davelaar E, et al. Quantitative determination of glycosylated and aglycon isoprenoid cytokinins at sub-picomolar levels by microcolumn liquid chromatography combined with electrospray tandem mass spectrometry. J Chromatogr A, 2001, 929: 31–42CrossRefGoogle Scholar
  39. 39.
    Ge L, Yong J W H, Goh N K, et al. Identification of kinetin and kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach of liquid chromatography-tandem mass spectrometry, high performance liquid chromatography and capillary electrophoresis. J Chromatogr B, 2005, 829: 26–34CrossRefGoogle Scholar
  40. 40.
    Ge L, Yong J W H, Tan S N, et al. Analysis of some cytokinins in coconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatography after solid-phase extraction. J Chromatogr A, 2004, 1048: 119–126Google Scholar
  41. 41.
    Ge L, Yong J W H, Tan S N, et al. Analysis of cytokinin nucleotides in coconut (Cocos nucifera L.) water using capillary zone electrophoresistandem mass spectrometry after solid-phase extraction. J Chromatogr A, 2006, 1133: 322–331CrossRefGoogle Scholar
  42. 42.
    Hou S, Zhu J, Ding M, et al. Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometry. Talanta, 2008, 76: 798–802CrossRefGoogle Scholar
  43. 43.
    Dobrev P I, Havlíček L, Vágner M, et al. Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr A, 2005, 1075: 159–166CrossRefGoogle Scholar
  44. 44.
    Smith J L, Moraes C M D, Mescher M C. Jasmonate-and salicylatemediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci, 2009, 65: 497–503CrossRefGoogle Scholar
  45. 45.
    Baldwin I T, Zhang Z P, Diab N, et al. Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta, 1997, 201: 397–404CrossRefGoogle Scholar
  46. 46.
    Chen H, Wilkerson C G, Kuchar J A, et al. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA, 2005, 102: 19237–19242CrossRefGoogle Scholar
  47. 47.
    Koo A J K, Gao X, Daniel J A, et al. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J, 2009, 59: 974–986CrossRefGoogle Scholar
  48. 48.
    Liu H T, Li Y F, Luan T G, et al. Simultaneous determination of phytohormones in plant extracts using SPME and HPLC. Chromatographia, 2007, 66: 515–520CrossRefGoogle Scholar
  49. 49.
    Vankova R, Gaudinova A, Sussenbekova H, et al. Comparison of oriented and random antibody immobilization in immunoaffinity chromatography of cytokinins. J Chromatogr A, 1998, 811: 77–84CrossRefGoogle Scholar
  50. 50.
    Hauserová E, Swaczynová J, Doležal K, et al. Batch immunoextraction method for efficient purification of aromatic cytokinins. J Chromatogr A, 2005, 1100: 116–125CrossRefGoogle Scholar
  51. 51.
    Ulvskov P, Marcussen J, Rajagopal R, et al. Immunoaffinity purification of indole-3-acetamide using monoclonal antibodies. Plant Cell Physiol, 1987, 28: 937–945Google Scholar
  52. 52.
    Nicander B, Stahl U, Bjorkman P O, et al. Immunoaffinity co-purification of cytokinins and analysis by high-performance liquid chromatography with ultraviolet-spectrum detection. Planta, 1993, 189: 312–320CrossRefGoogle Scholar
  53. 53.
    Maldiney R, Leroux B, Sabbagh I, et al. A biotin-avidin-based enzyme immunoassay to quantify three phytohormones: Auxin, abscisic acid and zeatin-riboside. J Immunol Methods, 1986, 90: 151–158CrossRefGoogle Scholar
  54. 54.
    Morris R O, Blevins D G, Dietrich J T, et al. Cytokinins in plant pathogenic bacteria and developing cereal grains. Aust J Plant Physiol, 1993, 20: 621–637CrossRefGoogle Scholar
  55. 55.
    Yong J W H, Wong S C, Letham D S, et al. Effects of elevated [CO2] and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton. Plant Physiol, 2000, 124: 767–779CrossRefGoogle Scholar
  56. 56.
    Grayling A, Hanke D E. Cytokinins in exudates from leaves and roots of red Perilla. Phytochemistry, 1992, 31: 1863–1868CrossRefGoogle Scholar
  57. 57.
    Cook N C, Bellstedt D U, Jacobs G. Endogenous cytokinins distribution patterns at budburst in Granny Smith and Braeburn apple shoots in relation to bud growth. Sci Hort, 2001, 87: 53–63CrossRefGoogle Scholar
  58. 58.
    Weiler E W. Radioimmunoassays for trans-zeatin and related cytokinins. Planta, 1980, 149: 155–162CrossRefGoogle Scholar
  59. 59.
    Wang S C, Li G J, Kai X, et al. Preparation and application of monoclonal antibodies specific for salicylic acid. Acta Bot Sin, 2001, 43: 1207–1210Google Scholar
  60. 60.
    Swaczynová J, Novák O, Hauserová E, et al. New techniques for the estimation of naturally occurring brassinosteroids. J Plant Growth Regul, 2007, 26: 1–14CrossRefGoogle Scholar
  61. 61.
    Li J, Wu Z Y, Xiao L T, et al. A novel piezoelectric biosensor for the detection of phytohormones-indole acetic acid. Analyt Sci, 2002, 18: 1–5CrossRefGoogle Scholar
  62. 62.
    Li C X, Li J, Xiao L T, et al. Amperometric immunosensor based on mercapto carboxylic acid self assembled monolayer for phytohormone indoleacetic acid assay. Acta Chim Sin, 2003, 61: 790–794Google Scholar
  63. 63.
    Wang H, Hu S S, Zhou X Y J. Voltammetric behavior of plant hormone abscisic acid. Wuhan Univ, 1997, 43: 721–724Google Scholar
  64. 64.
    Liu X H, Wang L S, Jiang Z L. A study on the 2.5 order differential voltammetric method for gibberellin and its application. J Anal Sci, 1997, 13: 222–224Google Scholar
  65. 65.
    Jiang Z W, Jiang T B, Ju C Q, et al. Voltammetric behavior of zeatin and kinetin. Chem J Chin Univ, 1994, 15: 355–359Google Scholar
  66. 66.
    Li C X, Li J, Xiao L T, et al. Study on the electrochemical biosensor for photohormone indole 3-acetic acid. J Anal Sci, 2003, 19: 205–208CrossRefGoogle Scholar
  67. 67.
    Li J, Wu Z Y, Xiao L T. A novel piezoelectric biosensor for the detection of phytohormone β-indole acetic acid. Anal Sci, 2002, 18: 403–407CrossRefGoogle Scholar
  68. 68.
    Ge L, Peh C Y C, Yong J W H, et al. Analyses of gibberellins by capillary electrophoresis-mass spectrometry combined with solid-phase extraction. J Chromatogr A, 2007, 1159: 242–249CrossRefGoogle Scholar
  69. 69.
    Ge L, Yong J W H, Tan S N, et al. Determination of cytokinins in coconut (Cocos nucifera L.) water using capillary zone electrophoresistandem mass spectrometry. Electrophoresis, 2006, 27: 2171–2181CrossRefGoogle Scholar
  70. 70.
    Albrecht T, Kehlen A, Stahl K, et al. Immunoaffinity co-purification of cytokinins and analysis by high-performance liquid chromatography liquid chromatography with ultraviolet-spectrum detection. Planta, 1993, 191: 86–94CrossRefGoogle Scholar
  71. 71.
    Gamoh K, Kitsuwa T, Takatsuto S, et al. Determination of trace brassinosteroids by high performance liquid chromatography. Anal Sci, 1988, 4: 533–535CrossRefGoogle Scholar
  72. 72.
    Verberne M C, Brouwer N, Delbianco F, et al. Method for the extraction of the volatile compound salicylic acid from tobacco leaf material. Phytochem Anal, 2002, 13: 45–50CrossRefGoogle Scholar
  73. 73.
    Fu J H, Chu J F, Wang J D, et al. Determination of auxin in Arabidopsis thaliana by solid phase extraction and high performance liquid chromatography with fluorescence detection. Chin J Anal Chem, 2009, 37: 1324–1327Google Scholar
  74. 74.
    Schmelz E A, Engelberth J, Alborn H T, et al. Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA, 2003, 100: 10552–10557CrossRefGoogle Scholar
  75. 75.
    Björkman P O, Tillberg E. Acetylation of cytokinins and modified adenine compounds: A simple and non-destructive derivatization method for gas chromatography-mass spectrometric analysis phytochemical analysis. Phytochem Anal, 1996, 7: 57–68CrossRefGoogle Scholar
  76. 76.
    Ikekawa N, Takatsuto S. Microanalysis of brassinosteroids in plants by gas chromatography/Mass spectrometry. Mass Spectroscopy, 1984, 32: 55–70Google Scholar
  77. 77.
    Tarkowski P, Ge L, Yong J W H, et al. Analytical methods for cytokinins. Trends Anal Chem, 2009, 28: 323–335CrossRefGoogle Scholar
  78. 78.
    Astot C, Dolezal K, Moritz T, et al. Precolumn derivatisation and capillary liquid chromatographic/frit-fast atom bombardment mass spectrometry analysis of cytokinins in Arabidopsis thaliana. J Mass Spectrom, 1998, 33: 892–902CrossRefGoogle Scholar
  79. 79.
    Pan X Q, Welti R, Wang X M. Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry, 2008, 69: 1773–1781CrossRefGoogle Scholar
  80. 80.
    Segarra G, Jáuregui O, Casanova E, et al. Simultaneous quantitative LC-ESI-MS/MS analyses of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic stress. Phytochemistry, 2006, 67: 395–401CrossRefGoogle Scholar
  81. 81.
    Müller A, Düchting P, Weiler E W. A multiplex GC-MS /MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds and its application to Arabidopsis thaliana. Planta, 2002, 216: 44–56CrossRefGoogle Scholar
  82. 82.
    Izumi Y, Okazawa A, Bamba T, et al. Development of a method for comprehensive and quantitative analysis of planthormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal Chim Acta, 2009, 648: 215–225CrossRefGoogle Scholar
  83. 83.
    Pramanik B N, Ganguly A K, Gross M L. Applied Electrospray Mass Spectrometry. Beijing: Chemical Industry Press, 2005. 132Google Scholar
  84. 84.
    Glauser G, Grata E, Dubugnon L, et al. Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem, 2008, 283: 16400–16407CrossRefGoogle Scholar
  85. 85.
    Rivier L, Crozier A. Principles and Practice of Plant Hormones Analysis, 1 and 2. London: Academic Press, 1987Google Scholar
  86. 86.
    Svatoš A, Antonchick A, Schneider B. Determination of brassinosteroids in the sub-femtomolar range using dansyl-3-aminophenylboronate derivatization and electrospray mass spectrometry. Rapid Commun Mass Spectrom, 2004, 18: 816–821CrossRefGoogle Scholar
  87. 87.
    Kojima M, Kamada-Nobusada T, Komatsu H. Highly sensitive and high-throughput analysis of plant hormones using MS-Probe modification and liquid chromatography-tandem mass spectrometry: An application for hormone profiling in Oryza sativa. Plant Cell Physiol, 2009, 50: 1201–1214CrossRefGoogle Scholar
  88. 88.
    ordström A, Tarkowski P, Tarkowska D, et al. Derivatization for LC-electrospray ionization-MS: A tool for improving reversed-phase separation and ESI responses of bases, ribosides, and intact nucleotides. Anal Chem, 2004, 76: 2869–2877CrossRefGoogle Scholar
  89. 89.
    Wang L, Wang Z F. Chromatographic Analysis and Sample Handling. Beijing: Chemical Industry Press, 2006. 94Google Scholar
  90. 90.
    Prinsen E, Dongen W V, Esmans E L, et al. HPLC linked electrospray tandem mass spectrometry: A rapid and reliable method to analyse indole-3-acetic acid metabolism in bacteria. J Mass Spectrom, 1997, 32: 12–22CrossRefGoogle Scholar
  91. 91.
    Most B H, Williams J C, Parker K J. Gas chromatography of cytokinins. J Chromatogr A, 1968, 38: 136–138CrossRefGoogle Scholar
  92. 92.
    Hocart C H, Wong O C, Letham D S, et al. Mass spectrometry and chromatography of t-butyldimethylsilyl derivatives of cytokinin bases. Anal Biochem, 1986, 153: 85–96CrossRefGoogle Scholar
  93. 93.
    Ludewig M, Dörffling K, König W A. Electron-capture capillary gas chromatography and mass spectrometry of trifluoroacetylated cytokinins. J Chromatogr A, 1982, 243: 93–98CrossRefGoogle Scholar
  94. 94.
    Birkemeyer C, Kolasa A, Kopka J. Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. J Chromatogr A, 2003, 993: 89–102CrossRefGoogle Scholar
  95. 95.
    Santner A, Estelle M. Recent advances and emerging trends in plant hormone signaling. Nature, 2009, 456: 1071–1078CrossRefGoogle Scholar
  96. 96.
    Rost T L, Weier T E. Botany, an Introduction to Plant Biology. New York: Wiley, 1979: 155–170Google Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXinjiang UniversityUrumqiChina
  2. 2.National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations