Advertisement

Chinese Science Bulletin

, Volume 55, Issue 35, pp 4005–4009 | Cite as

Global inventory of Helium-3 in lunar regoliths estimated by a multi-channel microwave radiometer on the Chang-E 1 lunar satellite

  • WenZhe Fa
  • YaQiu JinEmail author
Article Astronomy

Abstract

Helium-3 (3He) implanted by solar wind in the lunar regolith is a valuable resource because of its potential as a fusion fuel. On the basis of the Apollo regolith samples, a linear relationship between 3He abundance and solar wind flux, optical maturity and TiO2 content has been presented. China successfully launched its first lunar exploration satellite Chang-E 1 (CE-1) on October 24, 2007. A multi-channeled microwave radiometer was aboard the satellite with the purpose of measuring microwave thermal emission from the lunar surface layer. From the multi-channel brightness temperature (T b) observed by CE-1, the global distribution of the regolith thickness was inverted from the multi-channel T b, and was used to evaluate the total amount of 3He per unit area in the lunar regolith. The global inventory of 3He was estimated as being 6.6×108 kg; 3.7×108 kg for the lunar nearside and 2.9×108 kg for the lunar farside.

keywords

3He abundance regolith thickness Chang-E 1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewis J S. Extraterrestrial sources of 3He for fusion power. Space Power, 1991, 10: 363–372Google Scholar
  2. 2.
    Wittenberg L, Santarius J, Kulchinski G. Lunar source of 3He for fusion power. Fusion Tech, 1986, 10: 167–178Google Scholar
  3. 3.
    Fa W, Jin Y Q. Quantitative estimation of helium-3 spatial distribution in the lunar regolith layer. Icarus, 2007, 190: 15–23CrossRefGoogle Scholar
  4. 4.
    Swindle T D, Glass C E, Poulton M M. Mining lunar soils for 3He. UA/NASA Space Engineering Research Center TM-90/1, Tucson, UA/NASA SERC, 1990Google Scholar
  5. 5.
    Fegley B Jr, Swindle T D. Lunar volatiles: Implications for lunar resource utilization. In: Lewis J, Matthews M S, Guerrieri M L, eds. Resources of Near-Earth Space. Tucson: Press of University of Arizona, 1993. 367–426Google Scholar
  6. 6.
    Taylor L A. Helium-3 on the Moon: Model assumptions and abundance. Eng Constr Oper Space IV, ASCE Publ, Proc Space’94, 1994. 678–686Google Scholar
  7. 7.
    Johnson J R, Swindle T D, Lucey P G. Estimated solar wind-implanted helium-3 distribution on the Moon. Geophys Res Lett, 1999, 26: 385–388CrossRefGoogle Scholar
  8. 8.
    Shkuratov Yu G, Starukhina L V, Kaidash V G, et al. 3He distribution over lunar visible hemisphere. Sol Syst Res, 1999, 33: 409–420Google Scholar
  9. 9.
    Jiang J S. Microwave Moon. Sci China Ser D-Earth Sci, 2009, 39: 1028Google Scholar
  10. 10.
    Fa W Z, Jin Y Q. Simulation of brightness temperature from lunar surface and inversion of regolith layer thickness. J Geophys Res, 2007, 112: E05003CrossRefGoogle Scholar
  11. 11.
    Fa W Z. Jin Y Q. A primary analysis of microwave brightness temperature of lunar surface from Chang-E 1 multi-channel radiometer observation and inversion of regolith layer thickness. Icarus, 2010, 207: 605–615CrossRefGoogle Scholar
  12. 12.
    Li J L, Guo L, Qian Z, et al. Determination of the controlled landing trajectory of Chang’E-1 satellite and the coordinate analysis of the landing point on the Moon. Chinese Sci Bull, 2010, 55: 1240–1245CrossRefGoogle Scholar
  13. 13.
    Ping J S, Huang Q, Su X L, et al. Chang’E-1 orbiter discovers a lunar nearside volcano: YUTU Mountain. Chinese Sci Bull, 2009, 54: 4534–4536CrossRefGoogle Scholar
  14. 14.
    Yue Z Y, Liu J Z, Wu G G. Automated detection of lunar craters based on object-oriented approach. Chinese Sci Bull, 2008, 53: 3699–3704CrossRefGoogle Scholar
  15. 15.
    Zhao D P, Lei J S, Liu L. Seismic tomography of the Moon. Chinese Sci Bull, 2008, 53: 3897–3907CrossRefGoogle Scholar
  16. 16.
    Wu Y Z, Xu X S, Xie Z D, et al. Absolute calibration of the Chang’E-1 IIM camera and its preliminary application. Sci China Ser G-Phys Mech Astron, 2009, 52: 1842–1848CrossRefGoogle Scholar
  17. 17.
    Ping J S, Huang Q, Yan J G, et al. Lunar topographic model CLTM-s01 from Chang’E-1 laser altimeter. Sci China Ser G-Phys Mech Astron, 2009, 52: 1105–1114CrossRefGoogle Scholar
  18. 18.
    Lucey P G, Blewett D T, Jolliff B L. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J Geophys Res, 2000, 105: 20297–20305CrossRefGoogle Scholar
  19. 19.
    Lucey P G, Blewett D T, Taylor G J, et al. Imaging of lunar surface maturity. J Geophys Res, 2000, 105: 20337–20386Google Scholar
  20. 20.
    Shkuratov Yu G, Bondarenko N V. Regolith layer thickness mapping of the Moon by radar and optical data. Icarus, 2001, 149: 329–338CrossRefGoogle Scholar
  21. 21.
    Melosh H J. Impact Cratering: A Geologic Process. New York: Oxford University Press, 1989Google Scholar
  22. 22.
    Arnold J R. Monte Carlo simulation of turnover processes in the lunar regolith. In: Proc Lunar Sci Conf 6th, 1975. 2375–2396Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory of Wave Scattering and Remote Sensing Information (MOE)Fudan UniversityShanghaiChina
  2. 2.Institut de Physique du Globe de ParisSaint Maur des FossésParisFrance

Personalised recommendations